Date of Issuance: March 15, 2012

The next edition of this Code is scheduled for publication in 2014. This Code will become effective 6 months after the Date of Issuance.

ASME issues written replies to inquiries concerning interpretations of technical aspects of this Code. Interpretations, Code Cases, and errata are published on the ASME Web site under the Committee Pages at http://cstools.asme.org/ as they are issued.

Errata to codes and standards may be posted on the ASME Web site under the Committee Pages to provide corrections to incorrectly published items, or to correct typographical or grammatical errors in codes and standards. Such errata shall be used on the date posted.

The Committee Pages can be found at http://cstools.asme.org/. There is an option available to automatically receive an e-mail notification when errata are posted to a particular code or standard. This option can be found on the appropriate Committee Page after selecting “Errata” in the “Publication Information” section.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not “approve,” “rate,” or “endorse” any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assumes any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.
CONTENTS

Foreword .. ix
Committee Roster ... x
ASME B31.12-2011 Summary of Changes xiii

PART GR GENERAL REQUIREMENTS

Chapter GR-1 Scope and Definitions
GR-1.1 Scope ... 1
GR-1.2 Responsibilities .. 1
GR-1.3 Intent of the Code .. 2
GR-1.4 Packaged Equipment Requirements 2
GR-1.5 Terms and Definitions .. 2
GR-1.6 B31.12 Appendices .. 11
GR-1.7 Nomenclature .. 12

Chapter GR-2 Materials
GR-2.1 General Requirements .. 13
GR-2.2 Joining and Auxiliary Materials 27

Chapter GR-3 Welding, Brazing, Heat Treating, Forming, and Testing
GR-3.1 General .. 28
GR-3.2 Welding and Brazing ... 28
GR-3.3 Welding and Brazing Materials 31
GR-3.4 Construction of Weldments 31
GR-3.5 Preheating for Weldments ... 44
GR-3.6 Heat Treatment .. 44
GR-3.7 Specific and Alternative Heat Treat Requirements 47
GR-3.8 Construction of Brazements 47
GR-3.9 Forming of Pipe Components 50
GR-3.10 Testing .. 50

Chapter GR-4 Inspection, Examination, and Testing
GR-4.1 General .. 51
GR-4.2 Inspection ... 51
GR-4.3 Examination ... 51
GR-4.4 Personnel Qualification and Certification 52
GR-4.5 Extent of Required Examination and Testing 53
GR-4.6 Acceptance Criteria ... 53
GR-4.7 Supplementary Examination 53
GR-4.8 Examinations to Resolve Uncertainty 53
GR-4.9 Defective Components and Workmanship 53
GR-4.10 Progressive Sampling for Examination 53
GR-4.11 Testing ... 53
GR-4.12 Records ... 53
GR-4.13 NDE Definitions .. 53

Chapter GR-5 Operation and Maintenance
GR-5.1 General ... 55
GR-5.2 Operation and Maintenance Plan 55
GR-5.3 Maintenance Requirements 57
GR-5.4 Leakage Surveys .. 59
GR-5.5 Repair Procedures .. 59
GR-5.6 Injurious Dents and Mechanical Damage 59
GR-5.7 Permanent Repair of Welds With Defects ... 61
GR-5.8 Permanent Field Repair of Leaks and Nonleaking Corroded Areas 61
GR-5.9 Permanent Field Repair of Hydrogen Stress Cracking in Hard Spots and Stress Corrosion Cracking .. 61
GR-5.10 Testing and Examination of Repairs .. 61
GR-5.11 Valve Maintenance .. 61
GR-5.12 Transmission Pipeline Maintenance .. 62
GR-5.13 Abandoning of Transmission Facilities ... 63
GR-5.14 Decommissioning of Transmission Facilities 63
GR-5.15 Decommissioning of Transmission Facilities 63
GR-5.16 Repositioning a Pipeline in Service .. 63
GR-5.17 Testing for Integrity Assessment of In-Service Pipelines 64
GR-5.18 Distribution Pipeline Maintenance .. 65
GR-5.19 Leakage Surveys .. 65
GR-5.20 Leakage Investigation and Action .. 65
GR-5.21 Repair, Testing, and Examination of Mains Operating at Hoop Stress Levels at or Above 30% of the Specified Minimum Yield Strength 66
GR-5.22 Requirements for Abandoning, Disconnecting, and Reinstating Distribution Facilities ... 66
GR-5.23 Maintenance of Specific Facilities .. 67

Chapter GR-6 Quality System Program for Hydrogen Piping and Pipeline Systems
GR-6.1 Quality System Program ... 69
GR-6.2 Quality Manual ... 69
GR-6.3 Quality System Functions .. 69

Figures
GR-2.1.2-1 Minimum Temperatures Without Impact Testing for Carbon Steel Materials ... 20
GR-2.1.2-2 Reduction in Minimum Design Metal Temperature Without Impact Testing ... 22
GR-3.4.3-1 Geometry of Weld Joint Detail Single Vee Groove Butt With Extended Land ... 33
GR-3.4.3-2 Geometry of Weld Joint Detail Square Butt Weld 33
GR-3.4.3-3 Unequal Pipe Component Thicknesses, Thicker Components Bored for Alignment ... 33
GR-3.4.3-4 Geometry of Weld Joint Detail Single Vee Groove Butt, Open Root 33
GR-3.4.3-5 Unequal Pipe Component Thicknesses, Thicker Components Taper-Bored to Align ... 34
GR-3.4.3-6 Geometry of Weld Joint Detail Single Vee Groove Butt, Continuous Flat Backing Ring ... 34
GR-3.4.3-7 Geometry of Weld Joint Detail Single Vee Groove Butt, Continuous Tapered Backing Ring ... 34
GR-3.4.3-8 Geometry of Weld Joint Detail Single Vee Groove Butt, Consumable Insert ... 35
GR-3.4.3-9 Preparation and Alignment of Pipe Branch to Pipe Header Connection ... 35
GR-3.4.4-1 Geometry of Weld Deposit Single Vee Groove Butt, Open Root 36
GR-3.4.4-2 Geometry of Weld Deposit Root Single Vee Groove Butt With Extended Land (Without Filler Metal) ... 36
GR-3.4.4-3 Geometry of Weld Deposit Square Butt End (Without Filler Metal) ... 36
GR-3.4.5-1 Welding End Transition — Maximum Envelope ... 37
GR-3.4.6-1 Geometry of Weld Deposit Single Vee Groove Butt, Open Root With Concavity ... 39
GR-3.4.7-1 Fillet Weld Size .. 39
GR-3.4.7-2 Typical Details for Double-Welded Slip-On Flanges 40
GR-3.4.7-3 Minimum Welding Dimensions for Socket Welding Components to Pipe Including Fit-Up Detail ... 40
PART IP

INDUSTRIAL PIPING

Chapter IP-1 Scope and Responsibilities
IP-1.1 Scope .. 72
IP-1.2 Responsibilities ... 72
IP-1.3 Intent ... 72
IP-1.4 Determining Code Requirements 72

Chapter IP-2 Design Conditions and Criteria
IP-2.1 Design Conditions ... 73
IP-2.2 Design Criteria .. 74

Chapter IP-3 Pressure Design of Piping Components
IP-3.1 General .. 81
IP-3.2 Straight Pipe .. 81
IP-3.3 Curved and Mitered Segments of Pipe 82
IP-3.4 Branch Connections .. 83
IP-3.5 Closures .. 89
IP-3.6 Pressure Design of Flanges and Blanks 89
IP-3.7 Reducers ... 90
IP-3.8 Pressure Design of Other Components 90

Chapter IP-4 Service Requirements for Piping Components
IP-4.1 Valves and Specialty Components 92
IP-4.2 Bolting and Tapped Holes for Components 92

Chapter IP-5 Service Requirements for Piping Joints
IP-5.1 Scope .. 93
IP-5.2 Welded Joints .. 93
IP-5.3 Flanged Joints .. 93
IP-5.4 Expanded Joints ... 94
IP-5.5 Threaded Joints ... 95
IP-5.6 Caulked Joints .. 95
IP-5.7 Brazed and Soldered Joints 95
IP-5.8 Special Joints .. 96

Chapter IP-6 Flexibility and Support
IP-6.1 Flexibility of Piping .. 97
IP-6.2 Piping Supports ... 102
PART PL

PIPLINES

Chapter PL-1 Scope and Exclusions
- **PL-1.1** Scope .. 121
- **PL-1.2** Content and Coverage ... 121
- **PL-1.3** Exclusions ... 121

Chapter PL-2 Pipeline Systems Components and Fabrication Details
- **PL-2.1** Purpose .. 122
- **PL-2.2** Piping System Components .. 122
- **PL-2.3** Reinforcement of Fabricated Branch Connections 124
- **PL-2.4** Multiple Openings and Extruded Outlets 125
- **PL-2.5** Expansion and Flexibility .. 126
- **PL-2.6** Design for Longitudinal Stress .. 127
- **PL-2.7** Supports and Anchorage for Exposed Piping 129
- **PL-2.8** Anchorage for Buried Piping ... 130

Chapter PL-3 Design, Installation, and Testing
- **PL-3.1** Provisions for Design .. 131
- **PL-3.2** Buildings Intended for Human Occupancy 131
- **PL-3.3** Considerations Necessary for Concentrations of People in Location
 - Class 1 or 2 ... 132
- **PL-3.4** Intent .. 132
- **PL-3.5** Risk Assessment ... 132
- **PL-3.6** Location Class and Changes in Number of Buildings Intended for
 - Human Occupancy .. 133
- **PL-3.7** Steel Pipeline .. 135
- **PL-3.8** Hot Taps .. 141
- **PL-3.9** Precautions to Prevent Combustion of Hydrogen–Air Mixtures During
 - Construction Operations ... 141
- **PL-3.10** Testing After Construction ... 142
- **PL-3.11** Commissioning of Facilities ... 143
- **PL-3.12** Pipe-Type and Bottle-Type Holders 143
- **PL-3.13** Control and Limiting of Hydrogen Gas Pressure 144
- **PL-3.14** Uprating ... 146
- **PL-3.15** Valves .. 147
- **PL-3.16** Vault Provisions for Design, Construction, and Installation of Pipeline
 - Components .. 148
- **PL-3.17** Location for Customers’ Meter and Regulator Installations 149
- **PL-3.18** Hydrogen Gas Service Lines ... 149
- **PL-3.19** Inspection and Examination .. 150
- **PL-3.20** Repair or Removal of Defective Welds in Piping Intended to Operate at
 - Hoop Stress Levels of 20% or More of the Specified Minimum Yield Strength 153
- **PL-3.21** Steel Pipeline Service Conversions 153

Tables
- **PL-2.3.2-1** Reinforcement of Fabricated Branch Connections, Special
 - Requirements .. 126
- **PL-2.5.2-1** Thermal Expansion of Carbon and Low Alloy Steel 127
- **PL-2.5.5-1** Modulus of Elasticity for Carbon and Low Alloy Steel 127
| PL-3.6.1-1 | Location Class | 133 |
| PL-3.7.1-1 | Basic Design Factor, \(F \) (Used With Option A) | 135 |
| PL-3.7.1-2 | Basic Design Factor, \(F \) (Used With Option B) | 135 |
| PL-3.7.1-3 | Temperature Derating Factor, \(T \), for Steel Pipe | 135 |
| PL-3.7.1-4 | Nominal Chemical Composition Within a Specification/Grade | 137 |
| PL-3.7.1-5 | Design Factors for Steel Pipe Construction (Used With Option A) | 138 |
| PL-3.7.1-6 | Design Factors for Steel Pipe Construction (Used With Option B) | 138 |
| PL-3.7.5-1 | Maximum Degree of Bending | 140 |

Mandatory Appendices
- I Design of Above-Ground Hydrogen Gas Pipeline Facilities | 155
- II Reference Standards | 159
- III Safeguarding | 163
- IV Nomenclature | 165
- V (In Preparation) | 169
- VI Preparation of Technical Inquiries | 170
- VII Gas Leakage and Control Criteria | 172
- VIII (In Preparation) | 178
- IX Allowable Stresses and Quality Factors for Metallic Piping, Pipeline, and Bolting Materials | 179

Nonmandatory Appendices
- A Precautionary Considerations | 216
- B Alternative Rules for Evaluating Stress Range | 226
- C Recommended Practices for Proof Testing of Pipelines in Place | 228
- D Estimating Strain in Dents | 231
- E Sample Calculations for Branch Reinforcement in Piping | 232
- F Welded Branch Connections and Extruded Headers in Pipeline Systems | 236