Operation and Maintenance of Nuclear Power Plants
The next edition of this Code is scheduled for publication in 2015.

ASME issues written replies to inquiries concerning interpretations of technical aspects of this Code. Periodically certain actions of the ASME OM Committee may be published as Code Cases. Code Cases and interpretations are published on the ASME Web site under the Committee Pages at http://cstools.asme.org/ as they are issued.

Errata to codes and standards may be posted on the ASME Web site under the Committee Pages to provide corrections to incorrectly published items, or to correct typographical or grammatical errors in codes and standards. Such errata shall be used on the date posted.

The Committee Pages can be found at http://cstools.asme.org/. There is an option available to automatically receive an e-mail notification when errata are posted to a particular code or standard. This option can be found on the appropriate Committee Page after selecting “Errata” in the “Publication Information” section.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not “approve,” “rate,” or “endorse” any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assumes any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

No part of this document may be reproduced in any form,
in an electronic retrieval system or otherwise,
without the prior written permission of the publisher.

The American Society of Mechanical Engineers
Two Park Avenue, New York, NY 10016-5990

Copyright © 2013 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All rights reserved
Printed in U.S.A.
CONTENTS

(A Detailed Contents Precedes Each Division)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Preparation of Technical Inquiries</td>
<td>v</td>
</tr>
<tr>
<td>Committee Roster</td>
<td>vii</td>
</tr>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>Summary of Changes</td>
<td>xi</td>
</tr>
<tr>
<td>Division 1 OM Code: Section IST</td>
<td>1</td>
</tr>
<tr>
<td>Division 2 OM Standards</td>
<td>109</td>
</tr>
<tr>
<td>Division 3 OM Guides</td>
<td>309</td>
</tr>
</tbody>
</table>
DIVISION 1: OM CODE: SECTION IST

CONTENTS

SUBSECTION ISTA GENERAL REQUIREMENTS

ISTA-1000 Introduction .. 6
ISTA-1100 Scope .. 6
ISTA-1200 Jurisdiction .. 6
ISTA-1300 Application .. 6
ISTA-1400 Referenced Standards and Specifications 6
ISTA-1500 Owner’s Responsibilities .. 6
ISTA-1600 Accessibility ... 7

ISTA-2000 Definitions .. 7

ISTA-3000 General Requirements ... 8
ISTA-3100 Test and Examination Program 8
ISTA-3200 Administrative Requirements 8
ISTA-3300 Corrective Actions .. 9

ISTA-4000 Instrumentation and Test Equipment 9
ISTA-4100 Range and Accuracy ... 9
ISTA-4200 Calibration .. 9

ISTA-5000 To Be Provided at a Later Date 9
ISTA-6000 To Be Provided at a Later Date 9
ISTA-7000 To Be Provided at a Later Date 9
ISTA-8000 To Be Provided at a Later Date 9

ISTA-9000 Records and Reports ... 9
ISTA-9100 Scope .. 9
ISTA-9200 Requirements ... 9
ISTA-9300 Retention .. 10

Table
ISTA-1400-1 Referenced Standards and Specifications 6

SUBSECTION ISTB INSERVICE TESTING OF PUMPS IN LIGHT-WATER REACTOR
NUCLEAR POWER PLANTS — PRE-2000 PLANTS 11

ISTB-1000 Introduction .. 11
ISTB-1100 Applicability .. 11
ISTB-1200 Exclusions .. 11
ISTB-1300 Pump Categories ... 11
ISTB-1400 Owner’s Responsibility .. 11

ISTB-2000 Supplemental Definitions .. 11

ISTB-3000 General Testing Requirements 11
ISTB-3100 Preservice Testing ... 11
ISTB-3200 Inservice Testing .. 12
ISTB-3300 Reference Values ... 12
ISTB-3400 Frequency of Inservice Tests 13
ISTB-3500 Data Collection ... 13
<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISTB-4000</td>
<td>To Be Provided at a Later Date</td>
<td>14</td>
</tr>
<tr>
<td>ISTB-5000</td>
<td>Specific Testing Requirements</td>
<td>14</td>
</tr>
<tr>
<td>ISTB-5100</td>
<td>Centrifugal Pumps (Except Vertical Line Shaft Centrifugal Pumps)</td>
<td>14</td>
</tr>
<tr>
<td>ISTB-5200</td>
<td>Vertical Line Shaft Centrifugal Pumps</td>
<td>16</td>
</tr>
<tr>
<td>ISTB-5300</td>
<td>Positive Displacement Pumps</td>
<td>18</td>
</tr>
<tr>
<td>ISTB-6000</td>
<td>Monitoring, Analysis, and Evaluation</td>
<td>20</td>
</tr>
<tr>
<td>ISTB-6100</td>
<td>Trending</td>
<td>20</td>
</tr>
<tr>
<td>ISTB-6200</td>
<td>Corrective Action</td>
<td>20</td>
</tr>
<tr>
<td>ISTB-6300</td>
<td>Systematic Error</td>
<td>21</td>
</tr>
<tr>
<td>ISTB-6400</td>
<td>Analysis of Related Conditions</td>
<td>21</td>
</tr>
<tr>
<td>ISTB-7000</td>
<td>To Be Provided at a Later Date</td>
<td>21</td>
</tr>
<tr>
<td>ISTB-8000</td>
<td>To Be Provided at a Later Date</td>
<td>21</td>
</tr>
<tr>
<td>ISTB-9000</td>
<td>Records and Reports</td>
<td>21</td>
</tr>
<tr>
<td>ISTB-9100</td>
<td>Pump Records</td>
<td>21</td>
</tr>
<tr>
<td>ISTB-9200</td>
<td>Test Plans</td>
<td>21</td>
</tr>
<tr>
<td>ISTB-9300</td>
<td>Record of Tests</td>
<td>21</td>
</tr>
<tr>
<td>ISTB-9400</td>
<td>Record of Corrective Action</td>
<td>21</td>
</tr>
<tr>
<td>Figure ISTB-5223-1</td>
<td>Vibration Limits</td>
<td>18</td>
</tr>
<tr>
<td>Tables ISTB-3000-1</td>
<td>Inservice Test Parameters</td>
<td>12</td>
</tr>
<tr>
<td>ISTB-3400-1</td>
<td>Inservice Test Frequency</td>
<td>13</td>
</tr>
<tr>
<td>ISTB-3510-1</td>
<td>Required Instrument Accuracy</td>
<td>13</td>
</tr>
<tr>
<td>ISTB-5121-1</td>
<td>Centrifugal Pump Test Acceptance Criteria</td>
<td>15</td>
</tr>
<tr>
<td>ISTB-5221-1</td>
<td>Vertical Line Shaft Centrifugal Pump Test Acceptance Criteria</td>
<td>17</td>
</tr>
<tr>
<td>ISTB-5321-1</td>
<td>Positive Displacement Pump (Except Reciprocating) Test Acceptance Criteria</td>
<td>19</td>
</tr>
<tr>
<td>ISTB-5321-2</td>
<td>Reciprocating Positive Displacement Pump Test Acceptance Criteria</td>
<td>20</td>
</tr>
<tr>
<td>SUBSECTION ISTC INSERVICE TESTING OF VALVES IN LIGHT-WATER REACTOR NUCLEAR POWER PLANTS</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>ISTC-1000</td>
<td>Introduction</td>
<td>22</td>
</tr>
<tr>
<td>ISTC-1100</td>
<td>Applicability</td>
<td>22</td>
</tr>
<tr>
<td>ISTC-1200</td>
<td>Exemptions</td>
<td>22</td>
</tr>
<tr>
<td>ISTC-1300</td>
<td>Valve Categories</td>
<td>22</td>
</tr>
<tr>
<td>ISTC-1400</td>
<td>Owner’s Responsibility</td>
<td>22</td>
</tr>
<tr>
<td>ISTC-2000</td>
<td>Supplemental Definitions</td>
<td>22</td>
</tr>
<tr>
<td>ISTC-3000</td>
<td>General Testing Requirements</td>
<td>23</td>
</tr>
<tr>
<td>ISTC-3100</td>
<td>Preservice Testing</td>
<td>23</td>
</tr>
<tr>
<td>ISTC-3200</td>
<td>Inservice Testing</td>
<td>23</td>
</tr>
<tr>
<td>ISTC-3300</td>
<td>Reference Values</td>
<td>23</td>
</tr>
<tr>
<td>ISTC-3400</td>
<td>To Be Provided at a Later Date</td>
<td>23</td>
</tr>
<tr>
<td>ISTC-3500</td>
<td>Valve Testing Requirements</td>
<td>23</td>
</tr>
<tr>
<td>ISTC-3600</td>
<td>Leak Testing Requirements</td>
<td>25</td>
</tr>
<tr>
<td>ISTC-3700</td>
<td>Position Verification Testing</td>
<td>26</td>
</tr>
<tr>
<td>ISTC-3800</td>
<td>Instrumentation</td>
<td>26</td>
</tr>
<tr>
<td>ISTC-4000</td>
<td>To Be Provided at a Later Date</td>
<td>26</td>
</tr>
<tr>
<td>ISTC-5000</td>
<td>Specific Testing Requirements</td>
<td>26</td>
</tr>
<tr>
<td>ISTC-5100</td>
<td>Power-Operated Valves (POVs)</td>
<td>26</td>
</tr>
<tr>
<td>ISTC-5200</td>
<td>Other Valves</td>
<td>28</td>
</tr>
</tbody>
</table>
SUBSECTION ISTD

PRESERVICE AND INSERVICE EXAMINATION AND TESTING OF DYNAMIC RESTRAINTS (SNUBBERS) IN LIGHT-WATER REACTOR NUCLEAR POWER PLANTS

ISTD-1000 Introduction .. 32
ISTD-1100 Applicability .. 32
ISTD-1400 Owner’s Responsibility ... 32
ISTD-1500 Snubber Maintenance or Repair 32
ISTD-1600 Snubber Modification and Replacement 32
ISTD-1700 Deletions of Unacceptable Snubbers 32
ISTD-1800 Supported Component(s) or System Evaluation 33
ISTD-2000 Definitions .. 33
ISTD-3000 General Requirements .. 33
ISTD-3100 General Examination Requirements 33
ISTD-3200 General Testing Requirements 33
ISTD-4000 Specific Examination Requirements 34
ISTD-4100 Preservice Examination ... 34
ISTD-4200 Inservice Examination .. 34
ISTD-5000 Specific Testing Requirements 35
ISTD-5100 Preservice Operational Readiness Testing 35
ISTD-5200 Inservice Operational Readiness Testing 36
ISTD-5300 The 10% Testing Sample .. 38
ISTD-5400 The 37 Testing Sample Plan .. 39
ISTD-5500 Retests of Previously Unacceptable Snubbers 40
ISTD-6000 Service Life Monitoring ... 40
ISTD-6100 Predicted Service Life ... 40
ISTD-6200 Service Life Evaluation ... 40
ISTD-6300 Cause Determination .. 41
ISTD-6400 Additional Monitoring Requirements for Snubbers That Are Tested Without Applying a Load to the Snubber Piston Rod 41
ISTD-6500 Testing for Service Life Monitoring Purposes 41
ISTD-7000 Reserved .. 41
ISTD-8000 Reserved .. 41
ISTD-9000 Records and Reports ... 41
ISTD-9100 Snubber Records ... 41
ISTD-9200 Test Plans .. 41
ISTD-9300 Record of Tests ... 41
ISTD-9400 Record of Corrective Action .. 41
Figure
ISTD-5431-1 The 37 Testing Sample Plan .. 40
ISTF-3500 Data Collection .. 51
ISTF-4000 To Be Provided at a Later Date 52
ISTF-5000 Specific Testing Requirements .. 52
ISTF-5100 Centrifugal Pumps (Except Vertical Line Shaft Centrifugal Pumps) .. 52
ISTF-5200 Vertical Line Shaft Centrifugal Pumps .. 53
ISTF-5300 Positive Displacement Pumps .. 54
ISTF-6000 Monitoring, Analysis, and Evaluation .. 55
ISTF-6100 Trending .. 55
ISTF-6200 Corrective Action .. 55
ISTF-6300 Systematic Error ... 55
ISTF-6400 Analysis of Related Conditions .. 56
ISTF-7000 Reserved ... 56
ISTF-8000 Reserved ... 56
ISTF-9000 Records and Reports .. 56
ISTF-9100 Pump Records .. 56
ISTF-9200 Test Plans ... 56
ISTF-9300 Record of Tests .. 56
ISTF-9400 Record of Corrective Action ... 56

Tables
ISTF-3000-1 Inservice Test Parameters ... 51
ISTF-3510-1 Required Instrument Accuracy .. 52
ISTF-5120-1 Centrifugal Pump Test Acceptance Criteria .. 53
ISTF-5220-1 Vertical Line Shaft and Centrifugal Pump Test Acceptance Criteria .. 54
ISTF-5320-1 Positive Displacement Pump (Except Reciprocating) Test Acceptance Criteria .. 55
ISTF-5320-2 Reciprocating Positive Displacement Pump Test Acceptance Criteria .. 55

Mandatory Appendices
I Inservice Testing of Pressure Relief Devices in Light-Water Reactor Nuclear Power Plants ... 57
II Check Valve Condition Monitoring Program .. 73
III Preservice and Inservice Testing of Active Electric Motor Operated Valve Assemblies in Light-Water Reactor Power Plants .. 75
IV Intentionally Left Blank ... 80
V Pump Periodic Verification Test Program ... 81

Nonmandatory Appendices
A Preparation of Test Plans ... 82
B Dynamic Restraint Examination Checklist Items .. 85
C Dynamic Restraint Design and Operating Information .. 86
D Comparison of Sampling Plans for Inservice Testing of Dynamic Restraints .. 87
E Flowcharts for 10% and 37% Snubber Testing Plans .. 88
F Dynamic Restraints (Snubbers) Service Life Monitoring Methods .. 91
G Application of Table ISTD-4252-1, Snubber Visual Examination .. 93
H Test Parameters and Methods ... 95
J Check Valve Testing Following Valve Reassembly .. 97
K Sample List of Component Deterministic Considerations .. 98
L Acceptance Guidelines ... 99
DIVISION 2: OM STANDARDS

CONTENTS

PART 2 PERFORMANCE TESTING OF CLOSED COOLING WATER SYSTEMS IN LIGHT-WATER REACTOR POWER PLANTS

- 113

PART 3 VIBRATION TESTING OF PIPING SYSTEMS

- 114

1. **Scope** 114
2. **Definitions** 114
3. **General Requirements** 115
4. **Visual Inspection Method** 119
5. **Simplified Method for Qualifying Piping Systems** 119
6. **Rigorous Verification Method for Steady-State and Transient Vibration** .. 124
7. **Instrumentation and Vibration Measurement Requirements** 125
8. **Corrective Action** 126

Figures

1. Typical Components of a Vibration Monitoring System (VMS) 115
2. Deflection Measurement at the Intersection of Pipe and Elbow 120
3. Single Span Deflection Measurement ... 120
4. Cantilever Span Deflection Measurement ... 120
5. Cantilever Span/Elbow Span in Plane Deflection Measurement 120
6. Cantilever Span/Elbow Guided Span in Plane Deflection Measurement ... 121
7. Span/Elbow Span Out-of-Plane Deflection Measurement, Span Ratio < 0.5 ... 121
8. Span/Elbow Span Out-of-Plane Deflection Measurement, Span Ratio > 0.5 ... 121
9. Span/Elbow Span Out-of-Plane Configuration Coefficient Versus Ratio of Spans ... 121
10. Correction Factor C_1 ... 123

Tables

1. System Tolerances ... 117
2. Examples of Specifications of VMS Minimum Requirements 126

Nonmandatory Appendices

A. Instrumentation and Measurement Guidelines 127
B. Analysis Methods .. 130
C. Test/Analysis Correlation Methods ... 131
D. Velocity Criterion ... 132
E. Excitation Mechanisms, Responses, and Corrective Actions 133
F. Flow Chart — Outline of Vibration Qualification of Piping Systems ... 135
G. Qualitative Evaluations ... 137
H. Guidance for Monitoring Piping Steady-State Vibration Per Vibration Monitoring Group 2 ... 138
I. Acceleration Limits for Small Branch Piping 143
PART 26 DETERMINATION OF REACTOR COOLANT TEMPERATURE FROM DIVERSE MEASUREMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>255</td>
</tr>
<tr>
<td>2 Definitions</td>
<td>255</td>
</tr>
<tr>
<td>3 References</td>
<td>256</td>
</tr>
<tr>
<td>4 Requirements</td>
<td>256</td>
</tr>
<tr>
<td>5 Develop Test Procedures and Perform Testing</td>
<td>256</td>
</tr>
<tr>
<td>6 Documentation</td>
<td>258</td>
</tr>
</tbody>
</table>

Nonmandatory Appendix

A Measurement Equipment Uncertainties .. 259

PART 28 STANDARD FOR PERFORMANCE TESTING OF SYSTEMS IN LIGHT-WATER REACTOR POWER PLANTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>260</td>
</tr>
<tr>
<td>2 Definitions</td>
<td>260</td>
</tr>
<tr>
<td>3 References</td>
<td>261</td>
</tr>
<tr>
<td>4 General Testing Requirements</td>
<td>261</td>
</tr>
<tr>
<td>5 Specific Testing Requirements</td>
<td>266</td>
</tr>
<tr>
<td>6 Evaluate Test Data</td>
<td>266</td>
</tr>
<tr>
<td>7 Documentation</td>
<td>266</td>
</tr>
</tbody>
</table>

Mandatory Appendices

I Specific Testing Requirements of Emergency Core Cooling Systems in BWR Power Plants .. 268

II Specific Testing Requirements of Emergency Core Cooling Systems in PWR Power Plants .. 272

III Specific Testing Requirements of Auxiliary or Emergency Feedwater Systems in LWR Power Plants .. 275

IV Specific Testing Requirements of Closed Cooling Water Systems in LWR Power Plants .. 277

V Specific Testing Requirements of Emergency Service Water Systems in LWR Power Plants (Open Cooling Water Systems) 281

VI Specific Testing Requirements of Instrument Air Systems in LWR Power Plants ... 284

Nonmandatory Appendices

A Industry Guidance ... 289

B Guidance for Testing Certain System Characteristics .. 293

C Measurement Accuracy of System Characteristics .. 299

PART 29 ALTERNATIVE TREATMENT REQUIREMENTS FOR RISC-3 PUMPS AND VALVES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>306</td>
</tr>
<tr>
<td>2 Definitions</td>
<td>306</td>
</tr>
<tr>
<td>3 General Programmatic Requirements for RISC-3 Pumps and Valves</td>
<td>306</td>
</tr>
<tr>
<td>4 Alternative Treatment for Reasonable Confidence of RISC-3 Pump and Valve Performance</td>
<td>307</td>
</tr>
<tr>
<td>5 Corrective Action</td>
<td>307</td>
</tr>
<tr>
<td>6 Feedback and Treatment Adjustment</td>
<td>308</td>
</tr>
<tr>
<td>7 Records</td>
<td>308</td>
</tr>
</tbody>
</table>
DIVISION 3: OM GUIDES
CONTENTS

<table>
<thead>
<tr>
<th>PART 5</th>
<th>INSERVICE MONITORING OF CORE SUPPORT BARREL AXIAL PRELOAD IN PRESSURIZED WATER REACTOR POWER PLANTS</th>
<th>312</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purpose and Scope</td>
<td>312</td>
</tr>
<tr>
<td>2</td>
<td>Background</td>
<td>312</td>
</tr>
<tr>
<td>3</td>
<td>Program Description</td>
<td>314</td>
</tr>
<tr>
<td>4</td>
<td>Baseline Phase</td>
<td>314</td>
</tr>
<tr>
<td>5</td>
<td>Surveillance Phase</td>
<td>316</td>
</tr>
<tr>
<td>6</td>
<td>Diagnostic Phase</td>
<td>316</td>
</tr>
<tr>
<td>Figure</td>
<td>Reactor Arrangement Showing Typical Ex-Core Detector Locations</td>
<td>313</td>
</tr>
<tr>
<td>Table</td>
<td>Summary of Program Phases</td>
<td>315</td>
</tr>
<tr>
<td>Nonmandatory Appendices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Theoretical Basis</td>
<td>318</td>
</tr>
<tr>
<td>B</td>
<td>Data Reduction Techniques</td>
<td>320</td>
</tr>
<tr>
<td>C</td>
<td>Data Acquisition and Reduction</td>
<td>322</td>
</tr>
<tr>
<td>D</td>
<td>Data Evaluation</td>
<td>325</td>
</tr>
<tr>
<td>E</td>
<td>Guidelines for Evaluating Baseline Signal Deviations</td>
<td>329</td>
</tr>
<tr>
<td>F</td>
<td>Correlation of rms Amplitude of the Ex-Core Signal (Percent Noise) and Amplitude of Core Barrel Motion</td>
<td>334</td>
</tr>
<tr>
<td>G</td>
<td>Bibliography</td>
<td>335</td>
</tr>
</tbody>
</table>

PART 7
REQUIREMENTS FOR THERMAL EXPANSION TESTING OF NUCLEAR POWER PLANT PIPING SYSTEMS

<table>
<thead>
<tr>
<th>1</th>
<th>Scope</th>
<th>336</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Definitions</td>
<td>336</td>
</tr>
<tr>
<td>3</td>
<td>General Requirements</td>
<td>337</td>
</tr>
<tr>
<td>4</td>
<td>Reconciliation Methods</td>
<td>338</td>
</tr>
<tr>
<td>5</td>
<td>Corrective Action</td>
<td>340</td>
</tr>
<tr>
<td>6</td>
<td>Instrumentation Requirements for Thermal Expansion Measurement</td>
<td>340</td>
</tr>
<tr>
<td>Figures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>System Heatup, Reconciliation, and Corrective Action</td>
<td>339</td>
</tr>
<tr>
<td>2</td>
<td>Typical Components of a TEMS</td>
<td>341</td>
</tr>
<tr>
<td>Table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>An Example of Specification of TEMS Minimum Requirements</td>
<td>341</td>
</tr>
<tr>
<td>Nonmandatory Appendices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Guidelines for the Selection of Instrumentation and Equipment of a Typical TEMS</td>
<td>343</td>
</tr>
<tr>
<td>B</td>
<td>Thermal Stratification and Thermal Transients</td>
<td>346</td>
</tr>
</tbody>
</table>
PART 11 VIBRATION TESTING AND ASSESSMENT OF HEAT EXCHANGERS

1 Introduction

2 Definitions

3 References

4 Background Description

5 Selection of Equipment to Be Tested

6 Selection of Test Method

7 Test Requirements

8 Test Conditions

9 Documentation

10 Precautions

Figure

1 Tube Bundle Configuration With Tube Groupings Most Susceptible to Fluidelastic Instability Denoted by Cross-Hatching

Nonmandatory Appendices

A Causes of Vibration

B Methods for Comparative Evaluation of Fluidelastic and Turbulence-Induced Vibration

C Test Guidelines for Dynamic Characterization of Tubes

D External Vibration Surveys

E Detection Methods and Data Interpretation

F Vibration Acceptance Guidelines

G Installation of Strain Gages

PART 14 VIBRATION MONITORING OF ROTATING EQUIPMENT IN NUCLEAR POWER PLANTS

1 Introduction

2 Definitions

3 References

4 Vibration Monitoring

5 Establishing the Baseline

6 Establishing Vibration Limits

7 Data Acquisition

8 Hardware

9 Diagnostics

Figures

1 An Example of a Vibration Data Sheet

2 An Example of a Vibration Trend Curve

3 Vibration Level Trend Plot of Condition One

4 Vibration Level Trend Plot of Condition Two

Tables

1 Comparison of Periodic and Continuous Monitoring and Relative Advantages

2 Transducer Location Guidelines — Turbines

3 Transducer Location Guidelines — Equipment With Antifriction Bearings
Transducer Location Guidelines — Horizontal Pumps — Fluid Film Bearings ... 391
Transducer Location Guidelines — Motor-Driven Vertical Pumps — Fluid Film Bearings ... 391
Transducer Location Guidelines — Electric Motors .. 392
Vibration Troubleshooting Chart .. 399

Nonmandatory Appendices
A Instrumentation Selection and Use .. 400
B Transducers and Analysis Equipment 402

PART 17 PERFORMANCE TESTING OF INSTRUMENT AIR SYSTEMS IN LIGHT-WATER REACTOR POWER PLANTS 407

PART 19 PRESERVICE AND PERIODIC PERFORMANCE TESTING OF PNEUMATICALLY AND HYDRAULICALLY OPERATED VALVE ASSEMBLIES IN LIGHT-WATER REACTOR POWER PLANTS .. 408

1 Introduction ... 408
2 Definitions ... 408
3 Test Guidance .. 409
4 Test Methods .. 409
5 Analysis and Evaluation of Data .. 410
6 Corrective Action ... 411

PART 23 INSERVICE MONITORING OF REACTOR INTERNALS VIBRATION IN PRESSURIZED WATER REACTOR POWER PLANTS .. 412

1 Introduction ... 412
2 Definitions ... 412
3 References ... 414
4 Internals Vibration Excitation Sources, Responses, and Modes .. 415
5 Signal Database .. 415
6 Data Review ... 420

Figures
1 Schematic of a Pressurized Water Reactor (PWR) Showing Typical Sensor Arrangement .. 413
2 Beam and Shell Mode Vibration of a PWR Core Support Barrel .. 416
3 Typical Components in a Signal Data Acquisition System .. 418

Tables
1 Sensor Types and Potential Applications in Reactor Noise Analysis .. 417
2 Relationships Between Sampling Rates and Analysis Results .. 418

Nonmandatory Appendices
A Discussion of Spectral Functions .. 422
B Supporting Information on Component Vibrations .. 426
C Pump-Induced Vibrations .. 428
D Sampling Rate and Length of Data Record Requirement to Resolve a Spectral Peak .. 434