MC150
Fracture Mechanics and other Methods for Fatigue and Fracture Analysis of Pressure Equipment

Day 1

- Overview of Fatigue Analysis Methods
 - Fatigue Curves (S-N method)
 - Structural Stress Method for Welded joints
 - Fracture Mechanics

- Introduction to Fracture Mechanics
 - Why do cracks initiate and propagate?
 - Concept of plastic zone
 - Concept of constraint to yielding
 - Crack growth under cyclic loading
 - Crack growth due to environmental effects
 - Fast fracture (brittle fracture)

- Discussion of Initial Flaw Size
 - Minimum detectable flaw size using NDE
 - Sizing known flaws

- Characterization of Flaws (cracks)
 - Flaw depth and length
 - Branched cracks
 - Multiple flaws in close proximity
 - Flaw recategorization
 - Inspection techniques and sizing

- Level 1 Assessment
 - Screening Curves

- Level 2 Assessment
 - Determining partial safety factors (PSFs)
 - General procedure for computing stress intensity and reference stress
 - Primary, secondary and residual stress
 - Determining load and toughness ratios
 - Plasticity interaction factors
• Failure Assessment Diagram (FAD)
 – Construction and use of the FAD

Day 2

• Determining Crack Tip Stress Intensity and Reference Stress
 – Stress intensity solutions based on closed form equations for plates and shells
 – Finite Element Analysis Requirements for a Fracture Mechanics Analysis
 – Stress intensity factor solutions using third or fourth order polynomial curve fits
 – Stress intensity factor solutions using Weight Function methods
 – Solutions for reference stress in the un-cracked ligament

• Determination of Fracture Toughness
 – Fracture toughness parameters and inter-relationships
 – Relation of fracture toughness to Charpy V-Notch impact values
 – Fracture toughness testing
 – Charpy V-Notch testing
 ▪ Sub-size specimens
 – Conversion of Charpy V-Notch energy to fracture toughness
 – Concept of Transition Temperature
 – Calculation of lower bound fracture toughness when test results are not available.
 – Concept of static and dynamic fracture toughness (loading rate effects)
 – Effect of environment (e.g. hydrogen charging) on apparent fracture toughness
 – Effect of aging (embrittlement) on fracture toughness

• Determination of crack growth rates
 – Fatigue crack growth
 – Crack growth by stress corrosion cracking
 – Crack growth by hydrogen assisted cracking
 – Corrosion fatigue
 – Paris' law and its variants
 – Fatigue crack growth data in API 579-1/ASME FFS-1
 – Threshold stress intensity for crack growth

• Summary and Wrap-up