PD621
Grade 91 and Other Creep Strength Enhanced Ferretic Steels

Day One

- Course Overview
 - History of the development of the CSEF Steels
 - The fundamental metallurgy of the CSEF Steels
 - Problems associated with poor design
 - Problems associated with improper processing
 - Problems associated with deficient chemical composition
 - Unique issues encountered in the inspection of the CSEF steels
 - Welding of the CSEF Steels
 - Life assessment of the CSEF Steels

- History of Grade 91 and the CSEF Steels
 - Evolution from carbon steels to low alloys to X-20
 - Subsequent work by Teledyne on the precursors to Grade 91
 - Development of Grade 91 as part of the LMFBR (Liquid Metal Fast Breeder Reactor) program
 - Development of new and stronger creep resistant alloys for use in advanced power generating and processing equipment
 - Ultra-Supercritical steam generators, Combined Cycle units, High Temperature nuclear steam generators, etc.

- The Metallurgy of Grade 91 and the CSEF Steels
 - The theory of meta-stable alloys
 - Importance of lower transformation products to the development of superior creep strength
 - Importance of tempering and the precipitation of stabilizing carbides, carbo/nitrides to the development of superior creep strength
 - Chemical composition and the influence of key elements on alloy performance
 - Role of nitrogen in developing good creep strength for many of the CSEF steels,
 - Danger of certain nitride-forming elements in undermining nitrogen’s effect
 - Influence of certain austenite stabilizing elements, such as nickel and manganese, on the critical transformation temperatures
- Balancing austenite and ferrite stabilizing elements to minimize the amount of delta ferrite formed
 - Effect of delta ferrite on properties
- Effect of inter-critical heat treatment on creep properties
- Vulnerability to stress-corrosion cracking
- Control of properties through the use of a tempering parameter
 - the cumulative effect of thermal treatments on properties

Day Two

- **Design Advantages of the CSEF Steels and the Assessment of Long-Term Creep Strength**
 - Reductions in weight
 - Reductions in thickness and resistance to thermal-fatigue damage
 - Oxidation resistance of higher chromium CSEF steels
 - General philosophy of creep testing of engineering alloys
 - Importance of level of test stress on results
 - Importance of level of test temperature on results
 - Specifying temperature intervals at stress levels to provide more accurate extrapolation
 - Differences in test “philosophy” when assessing long-term creep strength
 - Kimura’s range splitting
 - Degraded vs. “normal” Grade 91 properties

- **Processing**
 - **Heat Treatment**
 - Recommended heat treatment practice for normalizing and tempering and post weld heat treatment
 - The importance of temperature control
 - The proper use of thermocouples for effective control of local heat treatments
 - Thickness vs. temperature during local heat treatments
 - size of heat and soak bands required to satisfy heat treating ranges
 - Use of a tempering parameter for control of microstructure
 - Problems encountered due to incorrect heat treatment
Welding
- Control of weld metal chemistry to optimize heat treat temperature range: the importance of CMTRs (Certified Material Test Report)
- Dissimilar metal weld issues
- Tempering response of weld metal
- Control of time between welding and PWHT (postweld heat treatment)
- The Type IV region
- Pre-heating and interpass temperatures
- The value of the hydrogen bake
- Crater cracking susceptibility
- Issues with different weld processes
- Problems encountered due to improper control of welding

Inspection and Assessment Issues
- Microstructure vs. Creep Strength
 - Examination by optical vs. electron microscopy
 - Metallographic replication as an inspection tool
- Hardness vs. Creep Strength
 - What is an appropriate maximum and minimum hardness for Grade 91 and the other CSEF steels?
 - What should be done if hardness if below desired range? Above desired range?
 - Types of hardness testers, their relative advantages and disadvantages
 - Decarburization issues
 - Intercritical heating and the limitations of hardness testing for QC (quality control)
 - Test site selection

Assessment Tools
- Creep testing
 - Miniature creep specimens
 - Punch tests
 - Full size creep specimens
- High temperature strain gauges
- Incorporation of creep results into life assessment

The ASME Code and the CSEF Steels
- The changing role of the ASME Code in US industry
 - The loss of technical talent in industry
 - The Code viewed as the technical resource of last resort
- Creating rules for the CSEF steels
 - More prescriptive rules needed for the CSEF steels
 - The scarcity of needed data on which to base rules