VERIFICATION OF ALLOWABLE STRESSES IN ASME SECTION III SUBSECTION NH FOR ALLOY 800H
Date of Issuance: November 1, 2008

This report was prepared as an account of work sponsored by U.S. Department on Energy (DOE) and the ASME Standards Technology, LLC (ASME ST-LLC).

Neither ASME, ASME ST-LLC, Cromtech, Inc., University of Dayton Research Institute, BW Roberts Consultants, Bpva Engineering, Stress Engineering Services, nor others involved in the preparation or review of this report, nor any of their respective employees, members, or persons acting on their behalf, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by ASME ST-LLC or others involved in the preparation or review of this report, or any agency thereof. The views and opinions of the authors, contributors, reviewers of the report expressed herein do not necessarily reflect those of ASME ST-LLC or others involved in the preparation or review of this report, or any agency thereof.

ASME ST-LLC does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a publication against liability for infringement of any applicable Letters Patent, nor assumes any such liability. Users of a publication are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this publication.

ASME is the registered trademark of the American Society of Mechanical Engineers.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

ASME Standards Technology, LLC
Three Park Avenue, New York, NY 10016-5990
ISBN No. 978-0-7918-3186-1

Copyright © 2008 by
ASME Standards Technology, LLC
All Rights Reserved
TABLE OF CONTENTS

Foreword ... vi

Abstract ... vii

PART I – BASE METAL ... 1

1 INTRODUCTION ... 2

2 IDENTIFICATION OF MATERIALS .. 3

3 AVAILABLE SOURCES FOR CREEP AND STRESS-RUPTURE DATA 5

4 DATA ANALYSIS PROCEDURES .. 8

 4.1 Current ASME Section II Procedures for Setting Time-Dependent Stress Allowables 8
 4.2 ASME Subsection NH Procedures for Setting Time-Dependent Stress Intensities 10
 4.3 A Few Other Data Analysis Procedures .. 11

5 EVALUATION OF THE STRESS-RUPTURE OF ALLOY 800H AT 750˚C AND HIGHER... 13

 5.1 Selection of Data .. 13
 5.2 Selection of Analysis Methods ... 15
 5.3 Example of the Addition to III-NH Table I-14.6C ... 21

6 SUMMARY AND RECOMMENDATIONS ... 22

References Part I .. 23

PART II - WELDMENTS ... 27

1 INTRODUCTION .. 28

2 IDENTIFICATION OF MATERIALS .. 29

3 REVIEW OF DATABASES FOR DEPOSITED FILLER METALS AND WELDMENTS..... 32

4 DATA ANALYSIS ... 35

 4.1 Tensile Data ... 35
 4.2 Assembly of the Stress-Rupture Database .. 39
 4.3 Procedure for Determining the Stress Reduction Factors ... 39
 4.4 Calculation of Stress Reduction Factors ... 42

5 DISCUSSION ... 45

6 SUMMARY AND RECOMMENDATIONS ... 46

References Part II .. 47

Appendix 1 - Compilation of Data on Weld Metals and Weldments 49

Appendix 2 - Coefficients for the Larson Miller Fit to Stress-Rupture Data 52

Appendix 3 - Examples of Calculated Stress Factors for Alloy 82 Weldments 53

Appendix 4 - Recommended Creep-Rupture Experimental Program to Address Stress Rupture Factors for Weldments in Alloy 800H for Service above 750˚C .. 54

Appendix 5 - Parametric Study of Weldment Behavior ... 59

Acknowledgments ... 65
List of Tables

Table 1 - Comparison of Chemistries for Variants of Alloy 800 .. 4
Table 2 - Effect of Data Selection on the LM Constants, C, for Three Lots in a Lot-Centered Analyses ... 19
Table 3 - Calculated Stresses for 100,000 Hours (MPa) Which Form the Basis for the Time-Dependent Allowable Stresses in ASME II-D .. 19
Table 4 - Comparison of the Average Strength of Alloy 800H at 800°C and 100,000 Hours from a Number of Sources ... 21
Table 5 - Comparison of Chemistries for Variants of Alloy 800 .. 29
Table 6 - Comparison of Chemistries for Coated Filler Metal Electrodes .. 30
Table 7 - Comparison of Chemistries for Bare Filler Metal Electrodes .. 31
Table 8 - Calculated 105 H Rupture Strengths and SRFs for Alloy 82 Welds and Weldments 43
Table 9 - Stress-Rupture Data for Alloy A Deposited Weld Metal .. 49
Table 10 - Stress-Rupture Data for Alloy A Deposited Cross Welds .. 49
Table 11 - Stress-Rupture Data for 21-33Nb Weld Metal ... 49
Table 12 - Stress-Rupture Data for Alloy 182 Deposited Weld Metal .. 49
Table 13 - Stress-Rupture Data for Alloy 82 Deposited Weld Metal .. 50
Table 14 - Stress-Rupture Data for Alloy 82 Cross Welds ... 51
Table 15 - Stress-Rupture Data for Alloy 182 Cross Weld ... 51
Table 16 - Test Matrix for Alloy 82 Weldment Evaluation ... 55
Table 17 - Test Matrix for Alloy 117 or Alloy 617 Weld Metal Evaluation .. 56
Table 18 - Test Matrix for Alloy 21/33Nb Weld Metal Evaluation .. 56
Table 19 - Test Matrix for Alloy 800H Weldments .. 57
Table 20 - Effect of Weldment Geometry on the Calculated Strength Reduction Factor 63

List of Figures

Figure 1 - Distribution of Carbon Contents in 37 Lots of Alloy 800H ... 13
Figure 2 - Distribution of Al+Ti Contents in 37 Lots of Alloy 800H ... 14
Figure 3 - Distribution of Grain Sizes in 37 Lots of Alloy 800 ... 14
Figure 4 - Distribution of Testing Temperatures for 37 Lots of Alloy 800H ... 15
Figure 5 - Distribution of Rupture Lives for 37 Lots of Alloy 800H .. 15
Figure 6 - Log Stress vs. Larson Miller Parameter for Alloy 800H .. 16
Figure 7 - Histogram of Residuals for Fit of LM Parameter for Alloy 800H .. 17
Figure 8 - Residuals vs. Rupture Life for LM Parameter Fit to Alloy 800H ... 17
Figure 9 - Residuals vs. Stress for LM Parameter Fit to Alloy 800H ... 18
Figure 10 - Residuals vs. Temperature for LM Parameter Fit to Alloy 800H
Figure 11 - \(F_{\text{ave}} \) vs. Temperature for Alloy 800H
Figure 12 - Comparison of ASME II-D Stresses with the New Fit for Alloy 800H
Figure 13 - Minimum Stress-to-Rupture vs. Time for Alloy 800H
Figure 14 - Comparison of the Yield Strength for Alloy A Weld Metal with Alloy 800H
Figure 15 - Comparison of the Tensile Strength for Alloy A Weld Metal with Alloy 800H
Figure 16 - Comparison of the Yield Strength for 21/33Nb Weld Metal with Alloy 800H and Alloy A Weld Deposit
Figure 17 - Comparison of the Tensile Strength for 21/33NB Weld Metal with Alloy 800H and Alloy A Weld Deposit
Figure 18 - Comparison of the Yield Strength for Alloy 117 Weld Metal with Alloy 800H
Figure 19 - Comparison of the Tensile Strength for Alloy 117 Weld Metal with Alloy 800H
Figure 20 - Comparison of the Yield Strengths of SMA and GTA Weld Metals
Figure 21 - Comparison of the Tensile Strengths of SMA and GTA Weld Metals
Figure 22 - Comparison of the Yield Strength for Alloy 82 Weld Metal with Alloy 800H
Figure 23 - Comparison of the Tensile Strength for Alloy 82 Weld Metal with Alloy 800H
Figure 24 - Comparison of Weldment Yield Strength with Alloy 800H Base Metal
Figure 25 - Comparison of Weldment Tensile Strength with Alloy 800H Base Metal
Figure 26 - Comparison of Alloy A Weld Strength with Alloy 800H Base Metal
Figure 27 - Comparison of Alloy A Weldment Strength with Alloy 800H Base Metal
Figure 28 - Comparison of Alloy 21/33Nb Weld Strength with Alloy 800H Base Metal
Figure 29 - Comparison of Alloy 82 Weld Strength with Alloy 800H Base Metal
Figure 30 - Comparison of Alloy 82 Weldment Strength with Alloy 800H Base Metal
Figure 31 - Calculated Stress Rupture Factors for Alloy 82 for 100,000 hr.
Figure 32 - Calculated Stress Rupture Factors for Alloy A for 100,000 hr.
Figure 33 - Comparison of Rupture Data for Alloy 82 Weldments with Calculated Curves Based on the LMP
Figure 34 - Comparison of Rupture Data for Alloy A Weldments with Calculated Curves Based on the LMP
Figure 35 - Example Geometries of Weldments with 20° Interface Angle
Figure 36 - General View of Weld FE Model
Figure 37 - Detail of Weld Interface
Figure 38 - Mises Stress Distribution on Weld Interface Under Full Developed Creep Conditions
Figure 39 - Hydrostatic Stress Distribution on Weld Interface Under Full Developed Creep Conditions
FOREWORD

This document is the result of work resulting from Cooperative Agreement DE-FC07-05ID14712 between the U.S. Department of Energy (DOE) and ASME Standards Technology, LLC (ASME ST-LLC) for the Generation IV (Gen IV) Reactor Materials Project. The objective of the project is to provide technical information necessary to update and expand appropriate ASME materials, construction and design codes for application in future Gen IV nuclear reactor systems that operate at elevated temperatures. The scope of work is divided into specific areas that are tied to the Generation IV Reactors Integrated Materials Technology Program Plan. This report is the result of work performed under Task 1 titled “Verification of Allowable Stresses in ASME Section III, Subsection NH with Emphasis on Alloy 800H and Grade 91 Steel (a.k.a., 9Cr-1Mo-V or ‘Modified 9CR-1Mo’).”

ASME ST-LLC has introduced the results of the project into the ASME volunteer standards committees developing new code rules for Generation IV nuclear reactors. The project deliverables are expected to become vital references for the committees and serve as important technical bases for new rules. These new rules will be developed under ASME’s voluntary consensus process, which requires balance of interest, openness, consensus and due process. Through the course of the project, ASME ST-LLC has involved key stakeholders from industry and government to help ensure that the technical direction of the research supports the anticipated codes and standards needs. This directed approach and early stakeholder involvement is expected to result in consensus building that will ultimately expedite the standards development process as well as commercialization of the technology.

ASME has been involved in nuclear codes and standards since 1956. The Society created Section III of the Boiler and Pressure Vessel Code, which addresses nuclear reactor technology, in 1963. ASME Standards promote safety, reliability and component interchangeability in mechanical systems.

The American Society of Mechanical Engineers (ASME) is a not-for-profit professional organization promoting the art, science and practice of mechanical and multidisciplinary engineering and allied sciences. ASME develops codes and standards that enhance public safety, and provides lifelong learning and technical exchange opportunities benefiting the engineering and technology community. Visit www.asme.org.

The ASME Standards Technology, LLC (ASME ST-LLC) is a not-for-profit Limited Liability Company, with ASME as the sole member, formed to carry out work related to newly commercialized technology. The ASME ST-LLC mission includes meeting the needs of industry and government by providing new standards-related products and services, which advance the application of emerging and newly commercialized science and technology and providing the research and technology development needed to establish and maintain the technical relevance of codes and standards. Visit www.stllc.asme.org for more information.
ABSTRACT

Part I Base Metal - Databases summarizing the creep-rupture properties of alloy 800H and its variants were reviewed and referenced. For the most part, the database was judged to be adequate to meet the needs for time-dependent properties in the extension of alloy 800H in ASME Section III Subsection NH (III-NH) to 900°C (1650°F) and 600,000 hours. Procedures for analyzing creep and stress-rupture data for III-NH were reviewed and compared to the current procedure endorsed by the ASME Section II on Materials. The stress-rupture database for alloy 800H in the temperature range of 750 to 1000°C (1382 to 1832°F) was assembled and used to estimate the average and minimum strength for times to 600,000 hours.

Part II Weldments - Databases summarizing the tensile and creep-rupture properties of deposited weld metal and weldments for alloy 800H were reviewed and referenced. Procedures for analyzing creep-rupture data for temperatures of 750°C (1382°F) and higher were reviewed and used to estimate the weld strength reduction factors (SRFs) as a function of time and temperature for temperatures to 900°C (1650°F). The database was judged to be inadequate to meet the needs for the extension of the use of filler metal for alloy 800H in ASME Section III Subsection NH to 900°C (1650°F). Five appendices were included that 1) listed the data used in the evaluation of the SRFs, 2) provided the values for parametric constants in the models, 3) provided an example of the calculated SRFs for alloy 82, 4) recommended supplemental creep-rupture testing to expand the database and improve the estimation of SRFs for long-time service and 5) provided a summary of a parametric Finite Element Analysis (FEA) study of cross-weld samples.