Contents

Foreword v
Recommendations ix
Preface xv

1 Taguchi Methods for Challenges in Manufacturing 1

1.1 Competition Among Manufacturing Industries and Business Administration Strategy 3

1.2 Example: Solving a Downstream Quality Problem Using a Traditional Approach 12

1.3 Robust Design for Downstream Noise Conditions 14

1.4 Reduction of Output Response Variation 14

1.5 From a Traditional Problem-Solving Approach to a Robust Design Approach 21

1.6 Assessment of Energy Transformation Efficiency 23
1.7 Traditional and Taguchi-Class Optimization Methods 34
1.8 Case Studies Based on Robust Design Procedures 41

2 Mathematical Structural of Orthogonal Arrays 47
2.1 Traditional Methods to Select Optimal Design Conditions 49
2.2 New Optimization Method Based on Orthogonal Arrays 50
2.3 Confirmation of the Optimal Condition 53
2.4 Introduction to Orthogonal Arrays 56

3 Methods to Select and Compound Noise Factors 61
3.1 Fire-Extinguishing Problem: Nagano Olympics Torch 63
3.2 Output Variation Root Causes 64
3.3 Noise Factor Selection 67
3.4 Noise Factors and Orthogonal Arrays (Outer Arrays) 68
3.5 Assigning a Signal Factor and Noise Factors to an Outer (Orthogonal) Array 69
3.6 Compounding Noise Factors for Preliminary Experiments 70
3.7 Noise Factors for Accelerated Tests (and Overload Tests) 71
3.8 Noise Factors for Reliability Tests 71
3.9 Surrogate Noise Factors 73
3.10 Noise Factors for Computer Simulations 76
3.11 Dr. Taguchi’s Quality Engineering Strategies for Noise Factors 78

4 Electric Motor Optimization Using Dynamic S/N (Signal-to-Noise) Ratios 81

4.1 Electric Motor Basic Function and Its Evaluation Characteristics 83
4.2 Electric Motor Optimization Using an L_{18} Orthogonal Array 87

5 S/N (Signal-to-Noise) Ratios for Static Characteristics and the Robustness Optimization Procedure 127

5.1 Experimental Design Checklist of Robustness Optimization for Business Administrators and Management (Step 1) 130
5.2 Set-up Targets for the Design Objective (Step 2) 130
5.3 Generate as Many Factors as Possible, Classify the Factors, and Develop a Cause-and-Effect Diagram (Step 3) 131
5.4 Categorize the Factors (Step 4) 133
5.5 Selection of Orthogonal Arrays (Step 5) 135
5.6 Number of Factor Levels and Range of Levels (Step 6) 137
5.7 Experimental Factors and Levels in an $L_{18}(2^{13})$ Orthogonal Array (Step 7) 141
5.8 Selection of Noise Factors (Step 8) 143
5.9 Sequence of Experimental Runs (Step 9) 145
5.10 Conduct Comparative Experiments (Step 10) 146
5.11 Data Transformation (Static Type S/N Ratios) for Optimization of Experimental Output (Step 11) 146
5.12 Optimization Procedure for the Control Factors (Step 12) 153
5.13 Confirmation of the Estimate From the Main-Effect Plots (Step 13) 158
5.14 Selection of Optimal Design Candidates (Step 14) 161
5.15 Adjustment of the Gold-Plating Thickness to 5 Micron (Step 15) 165
5.16 Optimal Settings and Confirmation Experiment (Step 16) 166
5.17 Applying the Optimal Settings to the Production Process (Step 17) 166

6 Standard Usage and Transformation of Taguchi-Class Orthogonal Arrays 169

6.1 Experimental Optimization Methods 171
6.2 Factor Effects and Output Responses 172
6.3 Orthogonal Arrays for Product/Process Development 173
6.4 Assessment of Interaction Effects 174
6.5 Orthogonal Arrays and the Number of Factor Levels 178
6.6 Useful Techniques to Assign Experimental Factors to Orthogonal Arrays 186
6.7 A Case Study Based on the Assignment Techniques From the Previous Sections Using an L_{18} Array (Improvement of Resin Film Tensile Strength Case Study Using Five-Level Factors, Dummy Treatment, Infeasible Runs, and Missing Data) 190

7 Taguchi Methods (Robust Design) and Traditional Experimental Optimization Procedures 205
7.1 Traditional Experimental Optimization Procedures 209
7.2 Input-Output Relationship Based on Input-Output Energy Transformation Approach 217
7.3 Improving the Effects of Individual Factors 228
7.4 Reproducibility of Traditional Experimental Optimization Methods 232
7.5 Traditional Experimental Optimization Methods Versus Taguchi Methods From the Viewpoint of Business Administrators 233
7.6 Taguchi Methods in the United States 236
7.7 Summary: Comparisons Between Traditional Experimental Optimization Methods and Taguchi Methods 238

8 Historical Events and Milestone Case Studies of Taguchi Methods 241

8.1 Biography of Dr. Genichi Taguchi (From Birth to Present) 243
8.2 Milestone Taguchi Methods Case Studies 247
8.3 Brief Discussion of Commonly Referenced Taguchi Methods Case Studies 250

9 Taguchi-Class Experimental Design Methods and Applications 303

9.1 Case Studies Based on the Row-Assembly Method of Taguchi-Class Experimental Design (Using Idle Column and Columns of Three- and Four-Level Factors) 306
9.2 Case Study Based on Modified Taguchi-Class Experimental Layouts 317
9.3 Categorization-and-Grouping Analysis and the Associated Long-Term Reliability Analysis 322
9.4 Root Cause Identification for Product Defects Based on an Orthogonal Layout 333
9.5 Multiple Sets of Experiments Based on the Same Orthogonal Array 335
9.6 Treatment for Multiple Randomly Associated Orthogonal Arrays 337

10 Energy Transformation/Transfer and Generic Function 351

10.1 Transformation From First-Level Energy Into Second-Level Energy 353
10.2 Types of Energy Transformation Mechanisms 354
10.3 Energy Transformation Mechanisms Case Studies 358
10.4 Brake System Improvement Case Study 373
10.5 Energy Transferring Mechanism 375
10.6 S/N (Signal-to-Noise) Ratios for Energy Transformation/Transferring Mechanisms 380
10.7 Q&A 382

11 Two-Step Design Optimization and Tolerance Design 385

11.1 Two-Step Design Optimization 387
11.2 Tolerance Design Applications 401
11.3 Summary 409
11.4 Tolerance Specification Differences 410
<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>Logarithm Transformation of the Output Response Data for Optimization</th>
<th>413</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Functional Input-Output Relationship and Control Factor Levels</td>
<td>415</td>
</tr>
<tr>
<td>12.2</td>
<td>Ideal Function of Input-Output Energy Transformation</td>
<td>416</td>
</tr>
<tr>
<td>12.3</td>
<td>A Metric of Functional Robustness for Design Optimization</td>
<td>420</td>
</tr>
<tr>
<td>12.4</td>
<td>Functional Relationship Between Input Energy and Output Response</td>
<td>425</td>
</tr>
<tr>
<td>12.5</td>
<td>Functional Relationship of a System</td>
<td>428</td>
</tr>
<tr>
<td>12.6</td>
<td>Additivity of Business Activities</td>
<td>430</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13</th>
<th>Output Characteristics, Statistics, and Calculation Examples of Taguchi Methods</th>
<th>433</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Dynamic and Static Characteristics</td>
<td>435</td>
</tr>
<tr>
<td>13.2</td>
<td>Classification and Assessment of Static Characteristics</td>
<td>452</td>
</tr>
<tr>
<td>13.3</td>
<td>Analysis of Percentage Data</td>
<td>468</td>
</tr>
<tr>
<td>13.4</td>
<td>Analysis of Ranking or Categorical Data</td>
<td>469</td>
</tr>
<tr>
<td>13.5</td>
<td>Operating Window Method</td>
<td>471</td>
</tr>
<tr>
<td>13.6</td>
<td>Dynamic Operating Window Method (Chemical Reaction Example)</td>
<td>472</td>
</tr>
<tr>
<td>13.7</td>
<td>Analysis of Digital Data (Optimization Based on Two Types of Error)</td>
<td>479</td>
</tr>
</tbody>
</table>
13.8 Development of Dynamic Characteristics Based on Transformability

13.9 Dynamic Characteristic of Two Signal Factors

13.10 S/N Ratio for Wavelet or Hermite-Format Output Response

13.11 Standard S/N Ratio for Nonlinear Systems

14 Methods and Mathematics for the Generation of Orthogonal Arrays

14.1 Investigation and Verification of Mathematical Properties of Orthogonal Arrays

14.2 Illustrations of Orthogonal Arrays Based on the Concept of Vectors

14.3 Methods to Generate Orthogonal Arrays

14.4 Printing Errors in the Orthogonal Arrays in Some Experimental Design Textbooks

15 Orthogonal Polynomial and Treatment Quantification for Missing Data

15.1 Missing Data

15.2 Replacement Values for Missing Data

15.3 Comparison Between Approximation Methods Based on Main-Effect Plots and Orthogonal Polynomials
15.4 Iterative Approximations When There are Multiple Missing Values 541
15.5 Quantification of Missing Data Caused by Various Test Disruptions 544

16 Reliability Test and Reliability Design 547
16.1 Reliability Data and Design for Reliability 549
16.2 Overconfidence and Misunderstanding of Traditional Reliability Engineering 551
16.3 Reliability Testing and Design for Reliability 552
16.4 Functional Assessment for a CD Motor Reliability Case Study 556
16.5 Functional Assessment for Reliability Design of a Semiconductor 559
16.6 Part Purchasing Decisions Based on Functional Assessment 569

17 Pattern Recognition and the MT (Mahalanobis-Taguchi) System 575
17.1 Pattern Recognition 577
17.2 Applications of the MT System to Identify Key Factors in Becoming Professional Musicians 577
17.3 Analysis Procedure and Case Studies of the MT System 584
17.4 Recent Development of the MT System 602

18 Illustrations and Applications of Standard Condition S/N (Signal-to-Noise) Ratios 609

18.1 Nonlinearity and Dynamic Characteristics 611
18.2 Definition of a Standard Condition (N_0) 613
18.3 Calculation Formula for Standard Condition S/N Ratio of a Dynamic Characteristic 614
18.4 Calculation of a Standard Condition S/N Ratio for the Push-Button Case Study 616
18.5 The Role of the Standard Condition S/N Ratio 627
18.6 Tuning (Adjustment) Methods 629
18.7 Mathematics Behind the Standard Condition S/N Ratio 630

19 Orthogonal Arrays and Software Debugging Methods 633

19.1 Software Development and the Associated Bug Problems 634
19.2 Software Debugging Method 634
19.3 Multiple Factors and Multiple Levels in Software Debugging Experiments and the Corresponding Concerns 639
19.4 Printer Software Debugging Case Study 641
19.5 Training Materials for Software Debugging 646

20 CAD/CAE Simulation Optimization 647
20.1 New CAE/CAD Simulation Role for Robust Design 649
20.2 CAST Design Development Process 654
20.3 Selection of Noise Factors for CAD/CAE Simulations 657
20.4 CAST Design for High-Speed Optimization 659
20.5 Fast CAST Design 664
20.6 CAST Design Case study for Next-Generation High Density Disk Drive 664

21 Q&A: Business Administration and Taguchi Methods 679

22 Exercises 729
22.1 Methods to Assign Experimental Factors to Orthogonal Arrays 731
22.2 Sliding Level Method to Assign Correlated Factors to Orthogonal Arrays 733
22.3 Raw Data Transformation Through S/N (Signal-to-Noise) Ratio and Sensitivity 734
22.4 Data Analysis Based on Orthogonal Arrays 741
22.5 Optimization of an Automatic Screening Machine (Two Types of Errors in a Digital Input/Output System) 775
22.6 Operating Window Extension Method (From Chapter 5, Section 2 of New Experimental Design Methods) 776
22.7 Tolerance Design for Parts and Manufacturing Process 779
22.8 MTS (Mahalanobis-Taguchi System and Gradual Categorization Method) 783
22.9 Experimental Design for Product Assembly 787

The following appendices do not appear in the book, but are viewable for free at www.asmedl.org

Appendix A The Roles and Usage of Orthogonal Arrays 789
Appendix B Q & A: Methods to Categorize Factors and Set Factor Levels 899
Appendix C Q & A: Data Transformation and Analysis Methods 957
Appendix D Q & A: The MT (Mahalanobis-Taguchi) System and Pattern Recognition 1011