TABLE OF CONTENTS

Preface

xiv

Nomenclature

xv

Chapter 1 Introduction

1. Drillstrings
 1.1 Drill Pipe
 1.2 Static Analysis
 1.2.1 Neutral Point
 1.2.2 Drill Collar Buckling
 1.2.3 Stabilized Drill Collars
 1.2.4 Drill Pipe Buckling
 1.3 Dynamic Analysis
 1.3.1 Drillstring Vibrations
 1.3.2 Downhole Measurements of Drill Bit Forces and Motion
 1.4 Directional Drilling
 1.4.1 Stabilized Bottom Hole Assemblies
 1.4.2 Directional Control Using Downhole Motors
 1.4.2.1 Positive Displacement Motors (PDM)
 1.4.2.2 Downhole Drilling Turbines
 1.5 Marine Drilling And Production Risers
 1.5.1 Hydrodynamic Forces on Cylinders
 1.5.2 Vortex Shedding
 1.5.3 Boundary Conditions
 1.5.4 Marine Risers Response Prediction

1
iv • Table of Contents

1.5.4.1 Closed Form Method of Solutions 22
1.5.4.2 Riser Displacement due to Rig Offset 23

1.5.5 Dynamic Response 26

1.6 Maturity of Drilling and Production Technology 26

References 27

Chapter 2 Mechanics of Long Beam Columns 31

2.1 Buckling Due to Weight of Vertical Column 31

2.2 Oscillation of a Hanging Chain 34
 2.2.1 Natural Frequency of a Freely Hanging Chain 34
 2.2.2 Natural Frequencies of a Hanging Chain Constrained at the Lower End 36

2.3 Short Beams Under Uniform Tension 38
 2.3.1 Constant Inside and Outside Pressure with Uniform Tension 39
 2.3.2 Static Analysis of Short Pipe 41
 2.3.2.1 Buckling of Short Pipe 41
 2.3.2.2 Buckling from Internal Pressure 43
 2.3.2.3 Uniformly Distributed Side Load 43
 2.3.2.4 Non-Uniformly Distributed Side Load 48
 2.3.3 Dynamic Analysis of Short Pipe 49
 2.3.3.1 Natural Frequencies and Mode Shapes 49
 2.3.3.2 Instability of Rotating Shafts with End Loads 50
 2.3.3.3 Modal Analysis of Short Pipe 52

2.4 Bending Equation for Long Beam-Columns 53
 2.4.1 Hydrostatic Effects of Surrounding Fluids of Equal Density 53
 2.4.2 Hydrostatic Effects of Surrounding Fluids of Different Densities 54
 2.4.3 Unique Features of the Differential Equation of Bending 54
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.3.1</td>
<td>Effective Tension</td>
<td>56</td>
</tr>
<tr>
<td>2.4.3.2</td>
<td>Closed Form Solution</td>
<td>57</td>
</tr>
<tr>
<td>2.5</td>
<td>Buckling and Frequencies of Long Vertical Pipe</td>
<td>59</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Pipes Completely Supported at the Top</td>
<td>63</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Synchronous Whirl of Long Pipe</td>
<td>63</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Fluid Density Greater than Pipe Density</td>
<td>67</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Pipe Completely Supported at the Lower End</td>
<td>67</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Stability of Pipe Stands (Case 11)</td>
<td>69</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Comparison of Pipe and Chain Solutions (Case 12)</td>
<td>69</td>
</tr>
<tr>
<td>2.5.7</td>
<td>Natural Frequencies of Steel Catenaries with Buoyancy</td>
<td>70</td>
</tr>
<tr>
<td>2.5.8</td>
<td>Comparison of Steel Catenary with Elastic Pipe Solutions</td>
<td>72</td>
</tr>
<tr>
<td>2.6</td>
<td>Torsion Buckling of Vertical Pipe</td>
<td>74</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Torsion Buckling of Short Pipe</td>
<td>74</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Torsion Buckling of Long Vertical Pipe</td>
<td>78</td>
</tr>
<tr>
<td>2.6.2.1</td>
<td>Both Top and Bottom Ends Pinned</td>
<td>80</td>
</tr>
<tr>
<td>2.6.2.2</td>
<td>Simply Supported at Both Ends with no End Thrust</td>
<td>84</td>
</tr>
<tr>
<td>2.6.2.3</td>
<td>Top End Pinned and Bottom End Fixed</td>
<td>85</td>
</tr>
<tr>
<td>2.7</td>
<td>Rotational Stability and Whirl of Vertical Pipe</td>
<td>88</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Stability of Long Vertical Pipe due to Torque, Rotation, and Damping</td>
<td>88</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Lower End Subjected to a Direct Pull Force</td>
<td>88</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Lower End Opened to Hydrostatic Pressure</td>
<td>90</td>
</tr>
<tr>
<td>2.7.3.1</td>
<td>Mathematical Solution</td>
<td>91</td>
</tr>
<tr>
<td>2.7.3.2</td>
<td>Stability Analysis</td>
<td>93</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Relative Whirl versus Absolute Whirl</td>
<td>99</td>
</tr>
<tr>
<td>2.8</td>
<td>Parametric Resonance</td>
<td>100</td>
</tr>
</tbody>
</table>

References | 102 |
Chapter 3 Drillinstring Mechanics 105

3.1 Buckling and Lateral Vibrations of Drill Pipe 105
 3.1.1 Differential Equation of Bending 105
 3.1.2 Method of Solution 108
 3.1.3 Use of Buckling Solution 109
 3.1.4 Natural Frequencies of Drill Pipe (Lateral Modes) 112

3.2 Buckling of Drill Collars 116
 3.2.1 Bending Equation 116
 3.2.2 Lubinski’s Solution 117
 3.2.3 Helical Buckling Within Well Bore or Casing 122

3.3 Stabilizer Placement Analysis 123
 3.3.1 Method of Solution 123
 3.3.2 Example Calculation 128

3.4 Buckling on an Inclined Plane 130
 3.4.1 Buckling of Drillstrings in Directional Wells 131

3.5 Drill Collar Dynamics 131
 3.5.1 Whirling Motion in Drill Collars 131
 3.5.1.1 Differential Equations of Motion 132
 3.5.1.2 Effective Tension 132
 3.5.1.3 Mathematical Solution 135
 3.5.1.4 Establishing $R_γ$ and $I_γ$ 136
 3.5.2 Criteria for Dynamic Stability 137
 3.5.3 Relative Whirl versus Absolute Whirl 138
 3.5.4 Synchronous Whirl Based on Zero Damping 139
 3.5.5 Experimental Measurements of Drill Collar Whirl 140
 3.5.6 Unbalanced Drill Collars 142
 3.5.7 Excitation by Positive Displacement Motors (PDM) 142
 3.5.8 Coupling of Axial and Lateral Vibrations 143
 3.5.9 Stick-Slip-Induced Vibrations 143

3.6 Theories of Axial and Torsion Vibrations 144
 3.6.1 Forced Vibrations 144
 3.6.2 Roller Cone Drill Bits 144
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.2.1</td>
<td>Axial and Torsion Vibration Model</td>
<td>145</td>
</tr>
<tr>
<td>3.6.2.2</td>
<td>Quantifying Damping for Axial Modes</td>
<td>150</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Natural Frequencies of Axial, Torsion, and Lateral Modes</td>
<td>152</td>
</tr>
<tr>
<td>3.6.3.1</td>
<td>Natural Frequencies of Axial Modes</td>
<td>153</td>
</tr>
<tr>
<td>3.6.3.2</td>
<td>Natural Frequencies of Torsion Modes</td>
<td>157</td>
</tr>
<tr>
<td>3.6.3.3</td>
<td>Natural Frequencies of Lateral Modes</td>
<td>159</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Polycrystalline Diamond Compact (PDC) Drill Bits</td>
<td>160</td>
</tr>
<tr>
<td>3.6.4.1</td>
<td>Self-Exciting Mechanism</td>
<td>160</td>
</tr>
<tr>
<td>3.6.4.2</td>
<td>Stability Analysis</td>
<td>162</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Experimental Verification</td>
<td>165</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Backward Whirl of PDC Drill Bits</td>
<td>168</td>
</tr>
<tr>
<td>3.6.6.1</td>
<td>Gear Tracking</td>
<td>168</td>
</tr>
<tr>
<td>3.6.6.2</td>
<td>Cutter Impulsive Force</td>
<td>169</td>
</tr>
<tr>
<td>3.6.7</td>
<td>Accounting for Torsion Flexibility in Drill Collars</td>
<td>171</td>
</tr>
<tr>
<td>3.6.7.1</td>
<td>Free Torsion Vibration Caused by Cutter Impulse</td>
<td>172</td>
</tr>
<tr>
<td>3.7</td>
<td>Vibration Control</td>
<td>174</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Roller Cone Drill Bits</td>
<td>175</td>
</tr>
<tr>
<td>3.7.1.1</td>
<td>Shock Absorbers</td>
<td>175</td>
</tr>
<tr>
<td>3.7.1.2</td>
<td>Drill Collar Design</td>
<td>176</td>
</tr>
<tr>
<td>3.7.2</td>
<td>PDC Rock Bit</td>
<td>178</td>
</tr>
<tr>
<td>3.7.2.1</td>
<td>Operation and Design for Regions of Stability</td>
<td>178</td>
</tr>
<tr>
<td>3.7.2.2</td>
<td>Shock Absorber Design for PDC Drill Bit Applications</td>
<td>178</td>
</tr>
<tr>
<td>3.7.2.3</td>
<td>Drill Bit Design</td>
<td>180</td>
</tr>
<tr>
<td>3.8</td>
<td>Friction in Directional Wells</td>
<td>180</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Coefficient of Friction</td>
<td>180</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Soft Pipe Model</td>
<td>181</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Elastically Flexible Model</td>
<td>184</td>
</tr>
<tr>
<td>3.8.3.1</td>
<td>Pulling out of Well Bore</td>
<td>184</td>
</tr>
<tr>
<td>3.8.3.2</td>
<td>Putting Pipe into Well Bore</td>
<td>189</td>
</tr>
</tbody>
</table>
References 191

Appendix 3A: Computer Model of Drill Collar Bending Between Multiple Stabilizers 195

Chapter 4 Mechanics of Marine Risers 201

4.1 Static Analysis of Marine Risers 201
4.1.1 Buckling of Marine Risers 201
4.1.2 Static Displacement of Riser in One Plane 205
4.1.2.1 Differential Equation of Bending 205
4.1.2.2 Boundary Conditions 206
4.1.3 Deflection Caused by Rig Offset 206
4.1.3.1 Ball Joint at Lower End 207
4.1.3.2 Flex/Ball Joint 210
4.1.3.3 Fixed Lower End 213
4.1.4 Deflections Caused by Uniform Current Loading 216
4.1.4.1 Differential Equation of Bending 217
4.1.4.2 Method of Solution 218
4.1.4.3 Effective Tension vs Average Effective Tension 222
4.1.5 Tapered Flex Joints 225
4.1.5.1 Equation of Bending 226
4.1.5.2 Parabolic Approximation to Moment of Inertia 226
4.1.5.3 Solution to Differential Equation 227
4.1.5.4 Example Calculation 230
4.1.5.5 Hydrostatic Effects 232
4.1.6 Interfacing Tapered Flex Joints with Uniform Riser Pipe 232
4.1.6.1 Boundary Conditions 233
4.1.6.2 Tapered Flex Joint Section 234
4.1.6.3 Uniform Riser Pipe Section 234
4.1.6.4 Merging the Two Solutions 236
4.1.6.5 Example Calculation 239
4.1.7 Broader Applications of the Closed Form Solution 241
4.1.7.1 Combining Two or Multiple Sections 241
Table of Contents • ix

4.1.7.2 Intermediate Buoys in Riser Pipe 248
4.1.8 Method of Segments 252
4.1.9 Ultra Deep Risers 254
 4.1.9.1 Tapered Flex Joint, Short Riser Pipe, Steel Catenary 255
 4.1.9.2 Tapered Flex Joint Section 255
 4.1.9.3 Short Riser Pipe Section 256
 4.1.9.4 Steel Catenary Section 256
 4.1.9.5 Boundary Conditions 257

4.2 Dynamic Analysis — Natural Frequencies 260
 4.2.1 Differential Equation of Motion 260
 4.2.1.1 Ball Joint Attachment 261
 4.2.1.2 Structurally Fixed at BOP 264
 4.2.2 Natural Frequencies Based on Steel Catenary Model 265
 4.2.3 Alternate Methods for Determining Natural Frequencies 265
 4.2.3.1 Uniform Tension 265
 4.2.3.2 Iteration on Lateral Mode 267

4.3 Dynamic Analysis — Forced Vibration 269
 4.3.1 In-Line Vibration Caused by Ocean Currents and Waves 269
 4.3.1.1 Formulation of Equation of Motion 271
 4.3.1.1.1 Current Loading 272
 4.3.1.1.2 Rig Offset 273
 4.3.1.1.3 Forced Vibration 273
 4.3.1.2 Example Calculation 274
 4.3.2 Vortex-Induced Vibration 275
 4.3.2.1 Self Exciting Mechanism 277
 4.3.2.2 Modal Analysis 278

Appendix 4A: Cables Suspended in Air 281

Appendix 4B: Comparison of Steel Catenary Approximation with Elastic Riser 284

References 286
Chapter 5 Applied Drilling Mechanics 289

5.1 Developing a Drilling Program 289
5.1.2 Operational Requirements 289
5.1.3 Design Specifications 290
5.1.4 Creating Design Alternatives 290
5.1.5 Evaluating Alternatives 290
5.1.6 Drillstring Design 291
 5.1.6.1 Drill Bits 292
 5.1.6.2 Roller Cone Drill Bits 292
 5.1.6.3 Polycrystalline Diamond Compact (PDC) Bits 292
 5.1.6.4 Natural Diamond Bits 292
 5.1.6.5 Cost Analysis 293
 5.1.6.6 Bottom Hole Assemblies 296
 5.1.6.7 Positive Displacement Motors 296
 5.1.6.8 Downhole Drilling Turbines 302
 5.1.6.9 Measurement While Drilling Tools 306
 5.1.6.9.1 Directional Drilling 307
 5.1.6.9.2 Vibration Monitoring 309
 5.1.6.10 Stabilized Assemblies 309
 5.1.6.10.1 Building Assemblies 309
 5.1.6.10.2 Holding Assemblies 310
 5.1.6.10.3 Dropping Assemblies 310
 5.1.6.11 Drill Collars 312
 5.1.6.12 Drill Pipe 314
 5.1.6.12.1 Drill Pipe Stress Components 314
 5.1.6.12.2 Bending at Drill Pipe/Drill Collar Interface 316
 5.1.6.12.3 Effect of Dog Legs on Bending Stress 317
 5.1.6.12.4 Tool Joints and Make-up Torque 322
Table of Contents

5.2 Hydraulics of Rotary Drilling 323
 5.2.1 Mud Pumps 324
 5.2.2 Parasitic Losses 325
 5.2.3 Nozzle Selection 328
 5.2.4 Annular Velocity Requirements 329
 5.2.5 Available Hydraulic Horsepower 330
 5.2.6 Power Demands of Downhole Motors 331

5.3 Optimum Drilling Practices 333
 5.3.1 Drill Bit Selection 333
 5.3.2 Bit Weight and Rotation Speed 334
 5.3.3 Optimum Hydraulics for Drill Bit Cleaning 335
 5.3.4 Impact Force 336
 5.3.5 Pressure Balance 338
 5.3.6 Drilling Mud Properties 338
 5.3.7 Bottom Hole Assembly Design 339

References 339

Chapter 6

Selected Topics in Marine Riser Design 341

6.1 Marine Drilling Risers 341
 6.1.1 Drilling Mode 341
 6.1.1.1 *Effective Tension and Riser Buckling* 342
 6.1.1.2 *Rotation Across Flex/Ball Joint* 342
 6.1.2 Non-Drilling Mode 345
 6.1.2.1 *Replacing Drilling Mud with Sea Water* 345
 6.1.2.2 *Replacing Drilling Mud with Sea Water* 347
 6.1.3 Disconnect Mode 348

6.2 Marine Production Risers 348
 6.2.1 Top-Mounted Tapered Flex Joint 348
 6.2.2 Optimizing Tapered Flex Joints 354

6.3 Bending of Bundled Tubulars Attached To Production Risers 355
 6.3.1 Method of Solution 356
 6.3.2 Example Calculation 361
Table of Contents

Appendix 6A: Bop Suspended at Lower End of Drilling Riser 364

Appendix 6B: Drill Pipe Whirl Within Drilling Risers 367

References 372