CONTENTS

Preface xviii

CHAPTER 1 Introduction 1
1.1 Model of a Valve Closure and Fluid Transient 1
1.2 Pipe Stresses 2
1.2.1 Static Stresses 2
1.2.2 Dynamic Stresses 2
1.3 Failure Theories 3
1.4 Valve Closure Model Summary 3

CHAPTER 2 Steady-State Fluid Mechanics and Pipe System Components 5
2.1 Conservation of Mass and Bernoulli’s Equation 5
2.1.1 Conservation of Mass 5
2.1.2 Bernoulli’s Equation 6
2.1.3 Limitations of Bernoulli’s Equation Due to Localized Flow Characteristics 7
2.2 Hydraulic and Energy Grade Lines 11
2.3 Friction Losses for Pipes 11
2.3.1 Types of Fluids 13
2.3.1.1 Viscosity Definition 13
2.3.1.2 Properties of Newtonian and Non-Newtonian Fluids 14
2.3.2 Laminar Flow in Newtonian and Non-Newtonian Fluids 15
2.3.3 Friction Factors from the Moody Diagram 16
2.3.3.1 Surface Roughness 19
2.3.3.2 Pipe and Tubing Dimensions 19
2.3.3.3 Density and Viscosity Data and Their Effects on Pressure Drops Due to Flow 23
2.3.4 Tabulated Pressure Drops for Water Flow in Steel Pipe 26
2.3.5 Effects of Aging on Water-Filled Steel Pipes 26

2.3.6 Friction Factors from Churchill’s Equation 28
2.3.7 Pipe Friction Losses for Bingham Plastic Fluids and Power Law Fluids 34
2.3.8 Flow and Friction Losses in Series Pipes 38
2.3.9 Parallel Pipes 40
2.3.10 Inlets, Outlets, and Orifices 41
2.3.11 Fitting Construction 41
2.3.12 Valve Designs 43
2.3.13 Gate Valves 55
2.3.14 Globe Valves 55
2.3.15 Ball Valves 55
2.3.16 Butterfly Valves 56
2.3.17 Plug Valves 56
2.3.18 Diaphragm Valves 56
2.3.19 Relief Valves 62
2.3.20 Safety Valves 62
2.3.21 Needle Valves 67
2.3.22 Pinch Valves 67
2.3.23 Traps 67
2.3.24 Pressure Regulators 68
2.3.25 Friction Losses for Fittings and Open Valves 68
2.3.26 Graphic Method for Friction Losses in Fittings and Valves 69
2.3.27 Crane’s Method for Friction Losses in Steel Fittings and Valves 69
2.3.28 Modified Crane’s Method for Friction Losses in Fittings and Valves of Other Materials and Pipe Diameters 69
2.3.29 Darby’s Method for Friction Losses in Fittings and Valves for Newtonian and Non-Newtonian Fluids 69
2.3.30 Tabulated Resistance Coefficients for Fittings and Valves Using Crane’s, Darby’s, and Hooper’s Methods 74
2.3.31 Valve Performance and Friction Losses for Throttled Valves 74
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1 Valve Flow Characteristics</td>
<td>75</td>
<td>3.1.2 Other Codes and Standards</td>
<td>120</td>
</tr>
<tr>
<td>2.5.2 Throttled Valve Characteristics</td>
<td>75</td>
<td>3.1.3 ASME B31.3, Process Piping</td>
<td>120</td>
</tr>
<tr>
<td>2.5.3 Resistance Coefficients for Throttled Valves</td>
<td>75</td>
<td>3.2 Pipe Material Properties</td>
<td>121</td>
</tr>
<tr>
<td>2.5.4 Valve Actuators</td>
<td>77</td>
<td>3.2.1 Tensile Tests</td>
<td>121</td>
</tr>
<tr>
<td>2.5.5 Flow Control</td>
<td>83</td>
<td>3.2.1.1 Ductile Materials</td>
<td>121</td>
</tr>
<tr>
<td>2.5.6 P’I’D’ Control</td>
<td>84</td>
<td>3.2.1.2 True Stress and True Strain</td>
<td>122</td>
</tr>
<tr>
<td>2.6 Design Flow Rates</td>
<td>88</td>
<td>3.2.1.3 Strain Hardening</td>
<td>122</td>
</tr>
<tr>
<td>2.7 Operation of Centrifugal Pumps in Pipe Systems</td>
<td>88</td>
<td>3.2.1.4 Loss of Ductility</td>
<td>123</td>
</tr>
<tr>
<td>2.7.1 Types of Centrifugal Pumps</td>
<td>88</td>
<td>3.2.1.5 Strain Rate Effects on Material Properties</td>
<td>124</td>
</tr>
<tr>
<td>2.7.2 Pump Curves</td>
<td>89</td>
<td>3.2.1.6 Brittle Materials</td>
<td>124</td>
</tr>
<tr>
<td>2.7.2.1 Affinity Laws</td>
<td>89</td>
<td>3.2.1.7 Elastic Modulus Data</td>
<td>124</td>
</tr>
<tr>
<td>2.7.2.2 Impeller Diameter</td>
<td>90</td>
<td>3.2.1.8 Yield Strength and Ultimate Strength Data</td>
<td>124</td>
</tr>
<tr>
<td>2.7.2.3 Impeller Speed</td>
<td>91</td>
<td>3.2.2 Charpy Impact Test</td>
<td>127</td>
</tr>
<tr>
<td>2.7.2.4 Acoustic Vibrations in Pumps and Pipe Systems</td>
<td>91</td>
<td>3.2.3 Fatigue Testing and Fatigue Limit</td>
<td>128</td>
</tr>
<tr>
<td>2.7.2.5 Power and Efficiency</td>
<td>92</td>
<td>3.2.3.1 Fatigue Limit Accuracy</td>
<td>128</td>
</tr>
<tr>
<td>2.7.2.6 Effects of Other Fluids on Pump Performance</td>
<td>92</td>
<td>3.2.3.2 Fatigue-Testing Methods and Fatigue Data</td>
<td>129</td>
</tr>
<tr>
<td>2.7.2.7 Net Positive Suction Head and Cavitation</td>
<td>92</td>
<td>3.2.3.3 Relationship of Fatigue to Vibrations</td>
<td>130</td>
</tr>
<tr>
<td>2.7.3 Motor Speed Control</td>
<td>99</td>
<td>3.2.3.4 Environmental and Surface Effects on Fatigue</td>
<td>131</td>
</tr>
<tr>
<td>2.7.3.1 Induction Motors</td>
<td>99</td>
<td>3.2.3.5 Summary of Fatigue Testing</td>
<td>132</td>
</tr>
<tr>
<td>2.7.3.2 Motor Starters</td>
<td>99</td>
<td>3.2.3.6 Fatigue Testing for Pipe Components</td>
<td>132</td>
</tr>
<tr>
<td>2.7.3.3 VFDs</td>
<td>99</td>
<td>3.2.3.7 Fatigue Curves for B31.3 Piping</td>
<td>132</td>
</tr>
<tr>
<td>2.7.3.4 Pump Shutdown and Inertia of Pumps and Motors</td>
<td>100</td>
<td>3.2.3.8 Pressure Cycling Fatigue Data</td>
<td>132</td>
</tr>
<tr>
<td>2.7.4 Pump Performance as a Function of Specific Speed</td>
<td>100</td>
<td>3.2.3.9 Fatigue Data for Pressure Vessel Design</td>
<td>132</td>
</tr>
<tr>
<td>2.7.5 Pump Heating Due to Flow Through the Pump</td>
<td>102</td>
<td>3.2.4 Poisson’s Ratio</td>
<td>136</td>
</tr>
<tr>
<td>2.7.6 System Curves</td>
<td>102</td>
<td>3.2.5 Material Densities</td>
<td>136</td>
</tr>
<tr>
<td>2.7.7 Parallel and Series Pumps</td>
<td>107</td>
<td>3.2.6 Thermal Expansion and Thermal Stresses</td>
<td>136</td>
</tr>
<tr>
<td>2.7.8 Parallel and Series Pipes</td>
<td>107</td>
<td>3.2.6.1 Thermal Stresses</td>
<td>136</td>
</tr>
<tr>
<td>2.8 Jet Pumps</td>
<td>107</td>
<td>3.2.6.2 Longitudinal Thermal Expansion of a Pipe</td>
<td>148</td>
</tr>
<tr>
<td>2.9 Two Phase Flow Characteristics</td>
<td>108</td>
<td>3.2.6.3 Bending Due to Thermal Expansion</td>
<td>152</td>
</tr>
<tr>
<td>2.9.1 Liquid/Gas Flows</td>
<td>108</td>
<td>3.3 Pipe System Design Stresses</td>
<td>152</td>
</tr>
<tr>
<td>2.9.1.1 Air Entrainment and Dissolved Gas</td>
<td>110</td>
<td>3.3.1 Stress Calculations</td>
<td>153</td>
</tr>
<tr>
<td>2.9.1.2 Air Binding in Pipes</td>
<td>113</td>
<td>3.3.2 Load-Controlled and Displacement-Controlled Stresses</td>
<td>154</td>
</tr>
<tr>
<td>2.9.2 Open Channel Flow</td>
<td>113</td>
<td>3.3.3 Maximum Stresses</td>
<td>154</td>
</tr>
<tr>
<td>2.9.3 Liquid/Vapor Flows</td>
<td>114</td>
<td>3.3.4 Internal Pressure Stresses, Hoop Stresses</td>
<td>154</td>
</tr>
<tr>
<td>2.9.4 Liquid/Solid Flows</td>
<td>114</td>
<td>3.3.4.1 Corrosion and Erosion Allowances</td>
<td>155</td>
</tr>
<tr>
<td>2.9.5 Siphons</td>
<td>114</td>
<td>3.3.4.2 Hoop Stress and Maximum Pressure Limits</td>
<td>156</td>
</tr>
<tr>
<td>2.10 Design Summary for Flow in Steady-State Systems</td>
<td>116</td>
<td>3.3.5 Limits for Sustained Longitudinal Stresses, Occasional Stresses, and Displacement Stresses</td>
<td>157</td>
</tr>
<tr>
<td>CHAPTER 3 Pipe System Design</td>
<td>119</td>
<td>3.3.6 Allowable Stresses</td>
<td>161</td>
</tr>
<tr>
<td>3.1 Piping and Pressure Vessel Codes and Standards</td>
<td>119</td>
<td>3.3.7 Pipe Stresses and Reactions at Pipe Supports</td>
<td>164</td>
</tr>
<tr>
<td>3.1.1 ASME Piping and Pressure Vessel Codes</td>
<td>119</td>
<td>3.3.7.1 Axial Stresses and Reactions Due to Pressure and Flow</td>
<td>164</td>
</tr>
</tbody>
</table>
Chapter 3.3.7 - Restraint and Control of Forces

- 3.3.7.1 Reactions and Pipe Stresses
- 3.3.7.2 Torsional Stresses and Moments
- 3.3.7.3 Stress Intensification Factors
- 3.3.7.4 Flexibility Calculation Example
- 3.3.7.5 Pipe Stresses Due to Pipe and Fluid Weights
- 3.3.7.6 Pipe Stresses Due to Pipe and Fluid Weights
- 3.3.7.7 Comparison of Code Stress Calculations
- 3.3.7.8 Comparison of Code Stress Calculations
- 3.3.7.9 Pipe Stresses Due to Wind and Earthquake
- 3.3.7.10 Pipe Supports and Anchor Designs
- 3.3.8 Structural Requirements for Fittings, Flanges, and Valves
- 3.3.9 Pipe Schedule and Pressure Ratings for Fittings, Flanges, and Valves
- 3.3.10 Flange Stresses
- 3.3.11 Limiting Stresses for Rotary Pump Nozzles

Summary of Piping Design

- Limit Load Analysis for Bending
- Limit Load Analysis for Equations for Bending of a Pipe
- Comparison of Limit Load Analysis to Cyclic Plasticity
- Plastic Deformation Due to Pressure, Hoop Stress
- Autofrettage
- Combined Stresses for Plasticity
- Comparison of Limit Load Analysis to the Bree Diagram
- Summary of Plastic Failure Analysis
- Fatigue Failure
- High-Cycle Fatigue Mechanism
- High-Cycle Fatigue Life of Materials
- Triaxial Fatigue Theories
- Maximum Normal Stress Theory, Triaxial Stresses
- Maximum Shear Stress Theory, Triaxial Stresses
- Octahedral Shear Stress Theory, Triaxial Stresses
- Cumulative Damage
- Rain Flow Counting Technique
- Use of Fatigue Theory and Equations
- Pressure Vessel Code, Fatigue Calculations
- Method 1: Elastic Stress Method for Fatigue
- Method 2: Elastic-Plastic Stress Method for Fatigue
- Method 3: Structural Stress Method for Fatigue
- Fatigue Summary
- Fracture Mechanics
- Fracture Mechanics History
- Applications of Fracture Mechanics and Fitness for Service
- LEFM
- Elastic-Plastic Analysis
- Elastic-Plastic Fracture Mechanisms
- Crack Propagation
- Stress Raisers
- Fracture Mechanics Summary
- Corrosion, Erosion, and Stress
- Corrosion Cracking
- Flow-Assisted Corrosion (FAC)
- Leak Before Break
- Thermal Fatigue
- Creep
- Examples of Creep-Induced Failures
- Creep in Plastic and Rubber Materials

Chapter 4 - Pipe Failure Analysis and Damage Mechanisms

- 4.1 Failure Theories
- 4.1.1 State of Stress at a Point, Multiaxial Stresses
- 4.1.2 Maximum Stresses
- 4.1.2.1 Principal Stresses
- 4.1.2.2 Maximum Shear Stresses
- 4.1.3 Stresses Due to Pipe Restraint
- 4.1.4 Failure Stresses
- 4.1.5 Comparison of Failure Stress Theories
- 4.1.6 Maximum Normal Stress Theory (Rankine)
- 4.1.7 Maximum Shear Stress Theory (Tresca, Guest)
- 4.1.8 Distortion Energy/Octahedral Shear Stress Theory (Von Mises, Huber, Henckey)
- 4.2 Structural Damage Mechanisms/Failure Criteria
- 4.3 Overload Failure or Rupture
- 4.3.1 Burst Pressure for a Pipe
- 4.3.2 External Pressure Stresses
- 4.4 Plastic Deformation
- 4.4.1 Plasticity Models for Tension
- 4.4.2 Cyclic Plasticity
- 4.4.3 Elastic Follow-Up
- 4.4.4 Cyclic, Plastic Deformation
- 4.4.5 Plastic Cycling for Piping Design
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12</td>
<td>Other Causes of Piping Failures</td>
<td>228</td>
</tr>
<tr>
<td>4.13</td>
<td>Summary of Piping Design and Failure Analysis</td>
<td>229</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>Fluid Transients in Liquid-Filled Systems</td>
<td>233</td>
</tr>
<tr>
<td>5.1</td>
<td>Slug Flow During System Startup</td>
<td>233</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Slug Flow Due to Pump Operation</td>
<td>234</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Slug Flow During Series Pump Operation</td>
<td>234</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Pump Runout Effects on Slug Flow</td>
<td>234</td>
</tr>
<tr>
<td>5.2</td>
<td>Draw Down of Systems</td>
<td>235</td>
</tr>
<tr>
<td>5.3</td>
<td>Fluid Transients Due to Flow Rate Changes</td>
<td>235</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Examples of Pipe System Damages in Liquid-Filled Systems</td>
<td>235</td>
</tr>
<tr>
<td>5.3.1.1</td>
<td>Hydroelectric Power Plants</td>
<td>235</td>
</tr>
<tr>
<td>5.3.1.2</td>
<td>Valve Closure</td>
<td>235</td>
</tr>
<tr>
<td>5.3.1.3</td>
<td>Vapor Collapse in a Liquid-Filled System</td>
<td>236</td>
</tr>
<tr>
<td>5.3.1.4</td>
<td>Damages Due to Combined Valve and Pump Flow Rate Changes</td>
<td>237</td>
</tr>
<tr>
<td>5.4</td>
<td>Types of Fluid Transient Models for Valve Closure</td>
<td>239</td>
</tr>
<tr>
<td>5.5</td>
<td>Rigid Water Column Theory</td>
<td>239</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Basic Water Hammer Equation, Elastic Water Column Theory</td>
<td>242</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Arithmetic Water Hammer Equation</td>
<td>245</td>
</tr>
<tr>
<td>5.6</td>
<td>Shock Waves in Piping</td>
<td>247</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Wave Speeds in Thin Wall Metallic Pipes</td>
<td>248</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Wave Speeds in Thick Wall Metallic Pipes</td>
<td>249</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Wave Speeds in Nonmetallic Pipes</td>
<td>250</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Effects of Entrained Solids on Wave Speed</td>
<td>250</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Effects of Air Entrainment on Wave Speed</td>
<td>250</td>
</tr>
<tr>
<td>5.7</td>
<td>Uncertainty of the Water Hammer Equation</td>
<td>252</td>
</tr>
<tr>
<td>5.8</td>
<td>Computer Simulations/Method of Characteristics</td>
<td>253</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Differential Equations Describing Fluid Motion</td>
<td>253</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Shock Wave Speed Equation</td>
<td>254</td>
</tr>
<tr>
<td>5.8.3</td>
<td>MOC Equations</td>
<td>254</td>
</tr>
<tr>
<td>5.9</td>
<td>Valve Actuation</td>
<td>257</td>
</tr>
<tr>
<td>5.10</td>
<td>Reflected Shock Waves</td>
<td>261</td>
</tr>
<tr>
<td>5.11</td>
<td>Reflected Waves in a Dead-End Pipe</td>
<td>261</td>
</tr>
<tr>
<td>5.12</td>
<td>Series Pipes and Transitions in Pipe Material</td>
<td>262</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>Fluid Transients in Steam Systems</td>
<td>287</td>
</tr>
<tr>
<td>6.1</td>
<td>Examples of Water Hammer Accidents in Steam/Condensate Systems</td>
<td>287</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Brookhaven Fatalities</td>
<td>287</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Hanford Fatality</td>
<td>287</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Savannah River Site Pipe Damages</td>
<td>289</td>
</tr>
<tr>
<td>6.1.3.1</td>
<td>Pipe Failure During Initial System Startup</td>
<td>289</td>
</tr>
<tr>
<td>6.1.3.2</td>
<td>Pipe Damages During System Restart</td>
<td>290</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Pipe Failures Due to Condensate-Induced Water Hammer</td>
<td>291</td>
</tr>
</tbody>
</table>
6.2 Water Hammer Mechanisms in Steam/Condensate Systems 291
6.2.1 Water Cannon 292
6.2.2 Steam and Water Counterflow 292
6.2.3 Condensate-Induced Water Hammer in a Horizontal Pipe 292
6.2.4 Steam Pocket Collapse and Filling of Voided Lines 293
6.2.5 Low-Pressure Discharge and Column Separation 295
6.2.6 Steam-Propelled Water Slug 295
6.2.7 Sudden Valve Closure and Pump Operations 295
6.3 Blowdown 295
6.3.1 Sonic Velocity at Discharge Nozzles 296
6.3.2 Piping Loads During Blowdown 297
6.3.3 Steam/Water Flow 298
6.3.4 Pressures in Closed Vessels and Thrust During Blowdown 298
6.4 Appropriate Operation of Steam Systems for Personnel Safety 300
6.4.1 System Startup 300
6.4.2 Steam Traps 301
6.5 Summary of Fluid Transients 301

CHAPTER 7 Shock Waves, Vibrations, and Dynamic Stresses in Elastic Solids 303
7.1 Strain Waves and Vibrations 303
7.1.1 One-Dimensional Strain Waves in a Rod 303
7.1.2 Three-Dimensional Strain Waves in a Solid 304
7.1.3 Vibration Terms 304
7.1.4 Vibrations in a Rod Due to Strain Waves 305
7.1.5 Dilatational Strain Waves in a Rod 305
7.1.6 Wave Reflections in a Rod 305
7.1.7 Strain Wave Examples for Rods 306
7.1.8 Inelastic Damage Due to Wave Reflections 308
7.2 Single Degree of Freedom Models 308
7.2.1 SDOF Oscillators 308
7.2.1.1 Homogeneous Solution to the Equation of Motion for a Step Response 311
7.2.1.2 Particular Solution to the Equation of Motion for a Step Response 311
7.2.1.3 General Solution to the Equation of Motion for a Step Response 312
7.2.2 Step Response for a SDOF Oscillator 312
7.2.2.1 Homogeneous Solution to the Equation of Motion for a Step Response 311
7.2.2.2 Particular Solution to the Equation of Motion for a Step Response 311
7.2.2.3 General Solution to the Equation of Motion for a Step Response 312
7.2.3 Impulse Response for a SDOF Oscillator 312
7.2.3.1 Homogeneous Solution to the Equation of Motion for a Step Response 311
7.2.3.2 Particular Solution to the Equation of Motion for a Step Response 311
7.2.3.3 General Solution to the Equation of Motion for a Step Response 312
7.2.4 Ramp Response for a SDOF Oscillator 313
7.2.5.1 SDOF Harmonic Response 313
7.2.5.2 SDOF Load Control 314
7.2.5.3 Steady-State, SDOF Load-Controlled Vibration 316
7.2.5.4 Frequency Effects on the DMF During SDOF Load-Controlled Vibration 316
7.2.5.5 DMF for SDOF Load Control 317
7.2.5.6 Multi-DOF Harmonic Response 317
7.2.5.7 Multi-DOF Load Control 317
7.2.5.8 Modal Contributions for Multi-DOF Vibrations 319
7.2.6 SDOF Harmonic Response 319
7.2.6.1 SDOF Load Control 319
7.2.6.2 Resonance for Multi-DOF Vibrations 319
7.2.6.3 Load-Controlled Vibrations for Rods 321
7.2.6.4 Load-Controlled Vibrations for Beams 323
7.2.6.5 Dynamic Stress Equations 324
7.2.6.6 Triaxial Vibrations 324
7.2.6.7 Damping 325
7.2.6.8 Proportional Damping 325
7.2.6.9 Structural Damping for Pipe Systems 326
7.2.6.10 Fluid Damping and Damping for Hoop Stresses 327
7.2.6.11 Summary of Dynamic Stresses in Elastic Solids 330

CHAPTER 8 Water Hammer Effects on Breathing Stresses for Pipes and Other Components 331
8.1 Examples of Piping Fatigue Failures 331
8.2 FEA Model of Breathing Stresses for a Short Pipe 331
8.2.1 FEA Assumptions 332
8.2.2 Model Geometry and Dynamic Pressure Loading 334
8.2.3 FEA Model for a Pipe With Fixed Ends 335
8.2.4 Stress Waves and Through-Wall Radial Stresses 336
8.2.5 Hoop Stresses for a Pipe With Fixed Ends 336
Contents

8.2.6 Axial Stresses for a Pipe with Fixed Ends 337
8.2.7 Impulse Loads 337
8.2.8 Stresses for a Pipe with One Free End 338
8.2.9 FEA Summary 339
8.3 Theory and Experimental Results for Breathing Stresses 340
8.4 Flexural Resonance 340
8.4.1 Flexural Resonance Theory 340
8.4.1.1 Moment in a Differential Element 340
8.4.1.2 Membrane Forces in a Cylindrical Shell 341
8.4.1.3 Axial Displacement in a Cylindrical Shell 342
8.4.1.4 Equation of Motion for a Cylindrical Shell 342
8.4.1.5 Evaluation of Flexural Resonance 343
8.4.1.6 DMF and the Critical Velocity 344
8.4.1.7 Breathing-Mode Frequency 345
8.4.1.8 Flexural Resonance Assuming Fixed Pipe Ends 345
8.4.1.9 Flexural Resonance Assuming Fixed Pipe Ends 345
8.4.2 Flexural Resonance Examples 345
8.4.2.1 Strains in Gun Tubes 345
8.4.2.2 Strains Due to Internal Shocks in a Tube 346
8.4.3 Summary of Flexural Resonance Theory 348
8.5 Dynamic Hoop Stresses 348
8.5.1 Bounded Hoop Stresses from Beam Equations 348
8.5.1.1 Precursor and Aftershock Vibrations 350
8.5.1.2 Pipe Wall Displacement Derivation 350
8.5.1.3 Pipe Wall Displacement Equation 350
8.5.1.4 Critical Velocity 351
8.5.1.5 DMF and Maximum Stresses from Beam Theory 351
8.5.2 Dynamic Stress Theory 351
8.5.2.1 Derivation of Dynamic Stress Equations 351
8.5.2.2 Static Stress 352
8.5.2.3 Equation of Motion for a SDOF Oscillator 352
8.5.2.4 Equation of Motion for a Cylinder Subjected to a Sudden Internal Pressure 352
8.5.2.5 Pipe Stresses Due to a Shock Wave 353
8.5.2.6 Precursor Stresses 353
8.5.2.7 Effects of the Arbitrary Selection of \(t = 0 \) 354
8.5.2.8 Effects of the Wave Speed 354
8.5.2.9 Maximum Damped Precursor Stress 354
8.5.2.10 Aftershock-Free-Vibration Stresses 354
8.5.2.11 Damping 355
8.5.2.12 Maximum Stress When the Critical Velocity is Not Considered 355
8.5.3 Comparison of Theory to Experimental Results for a Gas-Filled Tube 355
8.5.4 Comparison of Theory to Experimental Results for a Liquid-Filled Pipe 356
8.5.4.1 Test Setup and Raw Data 358
8.5.4.2 Test Results and Discussion 359
8.5.4.3 Breathing Stress Frequency 363
8.5.4.4 Wave Velocities 363
8.5.4.5 Pressure Surge Magnitude 363
8.5.4.6 Equivalent Axial and Hoop Strains 365
8.5.4.7 Example of Corrective Actions and Fitness for Service 365
8.5.4.8 Corrective Actions 365
8.5.4.9 Fitness for Service 365
8.5.4.10 Comparison of Flexural Resonance Theory to Dynamic Stress Theory 367
8.5.4.11 Valves and Fittings 369
8.5.4.12 Pressure Vessels 369
8.5.4.13 Plastic Hoop Stresses 370
8.5.4.14 FEA Results for a Shock Wave in a Short Pipe 370
8.5.4.15 Explosions in Pipes 371
8.5.4.16 Summary of Elastic and Plastic Hoop Stress Responses to Step Pressure Transients 373

CHAPTER 9 Dynamic Stresses Due to Bending 379

9.1 Deformations, Stresses, and Frequencies for Elastic Frames 379
9.1.1 Static Deflections and Reactions for Simply Supported Beams and Elastic Frames 379
9.1.2 Frequencies for Simple Beams 379
9.1.3 Frequencies for Elastic Frames 381
9.2 Elastic Stresses Due to Bending 383
9.2.1 Step Response Calculation for Bending 384
9.2.1.1 Calculation Assumptions 384
9.2.1.2 Axial Stresses 385
9.2.1.3 Bending Stresses 386
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.1.4</td>
<td>Hoop Stresses</td>
<td>387</td>
</tr>
<tr>
<td>9.2.1.5</td>
<td>Comparison of Calculated Bending Stress to an FEA Pipe Stress Model</td>
<td>388</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Ramp Response for Bending</td>
<td>388</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Impulse Response for Bending</td>
<td>390</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Multiple Bend FEA Models</td>
<td>392</td>
</tr>
<tr>
<td>9.3</td>
<td>FEA Model of Bending Stresses</td>
<td>393</td>
</tr>
<tr>
<td>9.4</td>
<td>Plastic Deformation and Stresses Due to Bending</td>
<td>393</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Consideration of Earthquake Damages to Pipe Systems</td>
<td>393</td>
</tr>
<tr>
<td>9.5</td>
<td>Summary of Stresses During Water Hammer</td>
<td>393</td>
</tr>
<tr>
<td>CHAPTER 10</td>
<td>Summary of Water Hammer-Induced Pipe Failures</td>
<td>395</td>
</tr>
<tr>
<td>10.1</td>
<td>Troubleshooting a Pipe Failure</td>
<td>396</td>
</tr>
<tr>
<td>10.2</td>
<td>Suggested References</td>
<td>396</td>
</tr>
<tr>
<td>10.3</td>
<td>Recommended Future Research</td>
<td>397</td>
</tr>
<tr>
<td>Appendix A: Notation and Units</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td>A.1</td>
<td>Systems of Units</td>
<td>399</td>
</tr>
<tr>
<td>A.2</td>
<td>Conversion Factors</td>
<td>400</td>
</tr>
<tr>
<td>A.3</td>
<td>Notation: Variables, Constants, and Dimensions</td>
<td>402</td>
</tr>
<tr>
<td>References</td>
<td>409</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>419</td>
<td></td>
</tr>
</tbody>
</table>