Table of Contents

Acknowledgments vii
Preface ix
Series Editors’ Preface xi
Nomenclature xii
1. Pipe structures and piping analysis 1
 1.1 Introduction 1
 1.2 Structural analysis of pipe structures 4
 1.2.1 Traditional piping analysis software 6
 1.2.2 Advanced piping analysis software 7
 1.3 Structural design evaluation – Linear and nonlinear alternatives 8
 1.3.1 Linear design evaluation 8
 1.3.2 Nonlinear design evaluation 10
 1.4 Concluding remarks 12
2. Nonlinear design evaluation alternatives – Class 1 piping 15
 2.1 Introduction 15
 2.2 Loads and load combinations 16
 2.3 Time-history dynamic loads 17
 2.4 Design condition 19
 2.5 Level A loads 20
 2.5.1 Fatigue evaluation 21
 2.5.2 Thermal stress ratchet evaluation 25
 2.5.3 Nonlinear evaluation alternatives 25
 2.6 Level B loads 27
 2.6.1 Load sets including non-reversing dynamic loads 28
 2.6.2 Load sets including reversing dynamic loads 29
 2.6.3 Fatigue evaluation 29
 2.7 Level D loads 30
 2.7.1 Load sets including non-reversing dynamic loads 30
 2.7.2 Load sets including reversing dynamic loads 33
 2.8 Level C loads 36
 2.8.1 Load sets including non-reversing dynamic loads 37
 2.8.2 Load sets including reversing dynamic loads 39
 2.9 Concluding remarks 40
3. Nonlinear design evaluation alternatives – Class 2 and Class 3 piping 41
 3.1 Introduction 41
 3.2 Linear design evaluation 41
 3.2.1 Design Condition 42
 3.2.2 Level A and B loads 42
 3.2.3 Level D loads 43
 3.2.4 Level C loads 45
3.3 Nonlinear design evaluation 46
 3.3.1 An argued alternative 46
 3.3.2 A Class upgrade alternative 47
 3.3.3 More on the Class upgrade alternative 48

3.4 Concluding remarks 48

4. Nonlinear finite element procedures for piping analysis 51
 4.1 Introduction 51
 4.2 Finite element procedures for collapse load analysis 52
 4.2.1 General notes 53
 4.2.2 The Plastic Analysis procedure 54
 4.2.3 The Limit Analysis procedure 57
 4.3 Finite element procedures for nonlinear transient analysis 58
 4.4 More on time-history dynamic loads and strain-based criteria 60
 4.5 Concluding remarks 62

5. Fatigue verification and nonlinear alternatives 65
 5.1 Introduction 65
 5.2 The requirements and procedures for fatigue verification 66
 5.3 The simplified elastic-plastic analysis alternative 67
 5.4 More on the simplified elastic-plastic analysis alternative 70
 5.5 Other alternatives 72
 5.5.1 General notes 72
 5.5.2 Thermal stress ratchet verification 73
 5.5.3 Other fatigue evaluation alternatives 74
 5.5.4 Nonlinear finite element analysis 77
 5.6 Concluding remarks 78

6. Piping supports under combined stresses and nonlinear effects in design evaluation 79
 6.1 Introduction 79
 6.2 Design evaluation of Linear Type supports under combined stresses 80
 6.2.1 Axial compression plus bending 80
 6.2.2 Axial tension plus bending 82
 6.3 The allowable stresses 82
 6.3.1 Design Condition and Level A 83
 6.3.2 Levels B and C 84
 6.3.3 Level D 85
 6.4 The allowable axial compressive stress (F_a) for Level D 87
 6.4.1 Alternative 1 89
 6.4.2 Alternative 2 90
 6.5 A verification example 91
 6.6 Concluding remarks 93

References 95
Index 107
About the authors 111